Goddard Space
Flight Center NASA > GSFC > Astrophysics Science Division > IXO |
|
You are here: Science» IXO Simulation Tools» IXO Simulator—Response Matrices
The most recent Segmented Glass optics responses are given here. SPO responses generated by Tim Oôsterbroek are available from the ESA web site. If you have any questions concerning using these response files for IXO spectral simulations or requests for assistance with scenarios not represented here, feel free to contact the IXO team. Segmented Glass optics response files were generated by Andrew Ptak using a glass mirror effective areas derived by Paul Reid and the same detector efficiencies as used in the SPO response files.
As the IXO mission is still under development, the exact specifications of the IXO mirrors and detectors are subject to change at any time.
When downloading files, please 'shift-click' rather than simply 'clicking' on the file links.
IXO_glass_responses.pdf – a memo describing the matrices, June 20, 2010
Current version: ixo-glass-xms-none-20100524.rsp, June 20, 2010
Notes
Constant Gaussian response with FWHM=2.5 eV with 0.5 eV bin channels. The calorimeter core array of 40 × 40 pixels maintains a 2.5 eV resolution (FWHM) at all energies.
Available from here.
Available from the ESA web site »
Available from here.
Current versions: June 20, 2010
Notes
The WFI is a DEPFET-type detector, with the significant advantage over earlier CCD-type detectors in that the charge in each pixel is read directly, rather than being transferred from row to row and read out. However, the overall resolution is still limited by the statistics of electron counting to be on order 100 eV. ixo-glass-wfi-alpp-20100625.rsp includes a thick optical blocking filter will be required for most observations to reduce optical loading.
Available from the ESA web site »
Available from here.
Current version: TBA.
Available from the ESA web site »
Available from here.
Current version: ixo-glass-catxgs-none-20100524.rsp, June 20, 2010
Notes
Model calculations of the XGS response for the critical angle transmission (CAT) and off-plane (OP) grating designs. An OP-XGS glass response will be released in the future.
Available from the ESA web site »
Available from here.
Current versions: June 20, 2010
Notes
The HTRS is a non-imaging silicon detector capable of detecting extremely high count rates up to 1 Million counts/s. Three different filter settings are included to allow estimates under different optical loading conditions.
Available from the ESA web site »
Available from here.
Current version: ixo-glass-xpol-20100524.rsp, June 20, 2010
Notes
X-ray Polarimeter matrix using Glass optics FMA effective area.
Available from the ESA web site »
Available from here.
Calorimeter Core (glass): ixo_ucal_0p5_081030.rsp
Version: October 30, 2008
Constant Gaussian response with FWHM=2.5 eV with 0.5 eV bin channels. The calorimeter core array of 40 × 40 pixels maintains a 2.5 eV resolution (FWHM) at all energies. The default response matrix uses bins 0.5 eV wide, which may not be ideal for all projects. If higher resolution is needed, the file ixo_ucal_0p2_081030.rsp uses 0.2 eV bins and should allow the best possible calculation of line centroids. Conversely, if resolution is less important and the 0.5 eV bin file is too big or slow, a much smaller file ixo_ucal_5p0_081030.rsp is available that uses 5 eV bins.
Calorimeter Core (Pore): IXO_CDF_tes_none_081117.rsp
Version: November 17, 2008
Matrix is from Tim Oôsterbroek; This was generated assuming a Carbon-overcoating and the loss in effective area due to the grating has been modeled and taken into account.
Calorimeter Outer (glass): ixo_ucal_outer_081105.rsp
Version: November 5, 2008
Constant Gaussian response with FWHM=10 eV with 1 eV bin channels. The outer calorimeter array uses larger pixels which use 4 separate absorbers for each transition-edge sensor (TES) pickup. This arrangement allows a larger FOV, but with a larger 10 eV resolution (FWHM) at all energies.
WFI: ixo_mdl_wfi_default_081030.rsp
Version: October 30, 2008
Sample matrix using Glass optics FMA effective area; from Tim Oosterbroek. The WFI is a DEPFET-type detector, with the significant advantage over earlier CCD-type detectors in that the charge in each pixel is read directly, rather than being transferred from row to row and read out. However, the overall resolution is still limited by the statistics of electron counting to be on order 100 eV.
WFI (pore): IXO_CDF_wfi_default.rsp
Version: December 10, 2008
WFI response using Pore optics with an Iridium (+ Carbon overcoat) coating; from Tim Oôsterbroek. The WFI is a DEPFET-type detector, with the significant advantage over earlier CCD-type detectors in that the charge in each pixel is read directly, rather than being transferred from row to row and read out. However, the overall resolution is still limited by the statistics of electron counting to be on order 100 eV.
WFI (pore with multi-layer): IXO_CDF_hard_wfi_default.rsp
Version: December 10, 2008
WFI response using multi-layer coating(r < 47cm) from Japanese group that increases hard X-ray response, primarily in the 10-15 keV region; from Tim Oôsterbroek. The WFI is a DEPFET-type detector, with the significant advantage over earlier CCD-type detectors in that the charge in each pixel is read directly, rather than being transferred from row to row and read out. However, the overall resolution is still limited by the statistics of electron counting to be on order 100 eV.
Hard X-ray Imager (Con-X-type): conx-hxt-080215.rsp
Version: February 15, 2008
A placeholder matrix with the same area as presented by Paul Gorenstein at the Dec 2006 Con-X FST meeting for a dual HXT option, and a "NuStar"-type CZT energy resolution. The exact specifications of the HXT mirror is still in flux. The matrix given here is from the original Constellation-X design, and overestimates the current effective area by a factor of 1.67.
Hard X-ray Imager (pore): IXO_CDF_hard_cdte_none_081117.rsp
Version: November 17, 2008
Hard X-ray response using multi-layer coating (r < 47 cm) on the pore optics FMA.
XGS (requirement): xgs_081216.rsp
Version: December 16, 2008
This matrix is unphysical but effectively describes the minimum requirements (effective area of 0.1 m2, R=3000) for the IXO gratings. The energy range covers 0.3-1.0 keV.
HTRS (glass): ixo_mdl_htrs_default_081030.rsp
Version: October 30, 2008
Sample matrix using Glass optics FMA effective area; from Tim Oôsterbroek. The HTRS is a non-imaging silicon detector capable of detecting extremely high count rates up to 1 Million counts/s.
HTRS (pore): IXO_CDF_htrs_default_081117.rsp
Version: November 17, 2008
From Tim Oôsterbroek; This was generated assuming a Carbon-overcoating and the loss in effective area due to the grating has been modeled and taken into account. The HTRS is a non-imaging silicon detector capable of detecting extremely high count rates up to 1 Million counts/s.
X-ray Polarimeter (glass): ixo_mdl_xpol_default_081030.rsp
Version: October 30, 2008
X-ray Polarimeter matrix using Glass optics FMA effective area; from Tim Oôsterbroek.
X-ray Polarimeter (pore): IXO_CDF_xpol_default_081117.rsp
Version: November 17, 2008
X-ray Polarimeter matrix using Pore optics FMA effective area assuming a Carbon-overcoating and the loss in effective area due to the grating has been modeled and taken into account; from Tim Oôsterbroek.