Bibliography

Abazajian, K. N. et al. 2009, , 182, 543

Ashby, M. L. N. et al. 2009, , 701, 428

Assef, R. J. et al. 2010, , 713, 970

Barmby, P. et al. 2006, ApJ Letters, 650, L45

Blöcker, T., Balega, Y., Hofmann, K., Lichtenthäler, J., Osterbart, R., & Weigelt, G. 1999, , 348, 805

Bonanos, A. Z. et al. 2006, , 652, 313

--. 2009, AJ, 138, 1003

--. 2010, AJ, 140, 416

Chevalier, R. A. & Irwin, C. M. 2012, , 747, L17

Clark, J. S. et al. 2012, , 541, A146

Crowther, P. A., Schnurr, O., Hirschi, R., Yusof, N., Parker, R. J., Goodwin, S. P., & Kassim, H. A. 2010, , 408, 731

Cutri, R. M. et al. 2003, 2MASS All Sky Catalog of point sources., ed. R. M. Cutri et al.

Dale, D. A. et al. 2009, ApJ, 703, 517

Davidson, K. 1987, , 317, 760

de Vaucouleurs, G. et al. 1991, Third Reference Catalogue of Bright Galaxies.

Egan, M. P., Clark, J. S., Mizuno, D. R., Carey, S. J., Steele, I. A., & Price, S. D. 2002, , 572, 288

Elitzur, M. & Ivezic, Z. 2001, , 327, 403

Fazio, G. G. et al. 2004, , 154, 10

Figer, D. F., McLean, I. S., & Morris, M. 1999, , 514, 202

Flesch, E. 2010, , 27, 283

Fullerton, A. W., Massa, D. L., & Prinja, R. K. 2006, , 637, 1025

Gal-Yam, A. et al. 2007, , 656, 372

Gardner, J. P. et al. 2006, , 123, 485

Gerke, J. R., Kochanek, C. S., Prieto, J. L., Stanek, K. Z., & Macri, L. M. 2011, , 743, 176

Gieren, W. et al. 2005, ApJ, 628, 695

--. 2006, , 647, 1056

Gordon, K. et al. 2007, in Spitzer Proposal ID #40245, 40245-+

Gordon, S. M., Duric, N., Kirshner, R. P., Goss, W. M., & Viallefond, F. 1999, , 120, 247

Gvaramadze, V. V., Kniazev, A. Y., & Fabrika, S. 2010, , 405, 1047

Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. 2003, , 591, 288

Higgs, L. A., Wendker, H. J., & Landecker, T. L. 1994, , 291, 295

Horiuchi, S., Beacom, J. F., Kochanek, C. S., Prieto, J. L., Stanek, K. Z., & Thompson, T. A. 2011, , 738, 154

Hubble, E. & Sandage, A. 1953, , 118, 353

Humphreys, R. M. & Davidson, K. 1984, Science, 223, 243

--. 1994, PASP, 106, 1025

Humphreys, R. M., Davidson, K., & Smith, N. 1999, , 111, 1124

--. 2002, , 124, 1026

Humphreys, R. M. et al. 1997, , 114, 2778

--. 2006, AJ, 131, 2105

Jones, D. H. et al. 2009, , 399, 683

Kennicutt, Jr., R. C. 1998, , 498, 541

Kennicutt, Jr., R. C. et al. 2003, PASP, 115, 928

--. 2008, , 178, 247

Khan, R., Stanek, K. Z., Kochanek, C. S., & Bonanos, A. Z. 2011, , 732, 43

Khan, R., Stanek, K. Z., Prieto, J. L., Kochanek, C. S., Thompson, T. A., & Beacom, J. F. 2010, ApJ, 715, 1094

Kochanek, C. S. 2011a, , 741, 37

--. 2011b, , 743, 73

Kochanek, C. S., Szczygiel, D. M., & Stanek, K. Z. 2012a, ArXiv e-prints, 1202.0281

Kochanek, C. S. et al. 2012b, , 200, 8

Koz\lowski, S. et al. 2010, , 708, 927

Liu, J. 2011, , 192, 10

Madore, B. F., Freedman, W. L., Catanzarite, J., & Navarrete, M. 2009, , 694, 1237

Maeder, A. 1981, , 101, 385

Massey, P. et al. 2007, AJ, 134, 2474

Mauerhan, J. C. et al. 2012, ArXiv e-prints, 1209.6320

McQuinn, K. B. W. et al. 2007, ApJ, 664, 850

Meixner, M. et al. 2006, AJ, 132, 2268

Meynet, G., Maeder, A., Schaller, G., Schaerer, D., & Charbonnel, C. 1994, , 103, 97

Mineo, S., Gilfanov, M., & Sunyaev, R. 2012, , 419, 2095

Mould, J. et al. 2008, ApJ, 687, 230

Neill, J. D. et al. 2011, , 727, 15

Pastorello, A. et al. 2007, , 447, 829

--. 2012, ArXiv e-prints, 1210.3568

Prieto, J. L. 2008, The Astronomer's Telegram, 1550, 1

Prieto, J. L., Brimacombe, J., Drake, A. J., & Howerton, S. 2012, ArXiv e-prints, 1210.3347

Prieto, J. L. et al. 2008, , 681, L9

Remillard, R. A. & McClintock, J. E. 2006, , 44, 49

Richards, G. T. et al. 2009, , 180, 67

Robinson, G., Hyland, A. R., & Thomas, J. A. 1973, , 161, 281

Saha, A. et al. 2006, , 165, 108

Schlafly, E. F. & Finkbeiner, D. P. 2011, , 737, 103

Schneider, D. P. et al. 2010, , 139, 2360

Sheth, K. et al. 2008, in Spitzer Proposal ID #60007, 60007

Smith, N. 2009, ArXiv e-prints, 0906.2204

Smith, N. & Brooks, K. J. 2007, , 379, 1279

Smith, N., Li, W., Silverman, J. M., Ganeshalingam, M., & Filippenko, A. V. 2011, , 415, 773

Smith, N. & McCray, R. 2007, , 671, L17

Smith, N. & Owocki, S. P. 2006, , 645, L45

Smith, N. et al. 2008, , 686, 467

Stern, D. et al. 2005, , 631, 163

Stetson, P. B. 1992, 25, 297

Stoll, R. et al. 2011, , 730, 34

Thompson, T. A., Prieto, J. L., Stanek, K. Z., Kistler, M. D., Beacom, J. F., & Kochanek, C. S. 2009, ApJ, 705, 1364

Tully, R. B., Rizzi, L., Shaya, E. J., Courtois, H. M., Makarov, D. I., & Jacobs, B. A. 2009, , 138, 323

Ueta, T., Meixner, M., Dayal, A., Deutsch, L. K., Fazio, G. G., Hora, J. L., & Hoffmann, W. F. 2001, , 548, 1020

van Dyk, S. D. 2005, in Astronomical Society of the Pacific Conference Series, Vol. 332, The Fate of the Most Massive Stars, ed. R. Humphreys & K. Stanek, 47

Van Dyk, S. D. et al. 2000, , 112, 1532

Véron-Cetty, M.-P. & Véron, P. 2010, , 518, A10

Vink, J. S. 2012, 384, 221

Voors, R. H. M. et al. 2000, , 356, 501

Wachter, S., Mauerhan, J. C., Van Dyk, S. D., Hoard, D. W., Kafka, S., & Morris, P. W. 2010, , 139, 2330

Whelan, D. G., Johnson, K. E., Whitney, B. A., Indebetouw, R., & Wood, K. 2011, , 729, 111

Zhang, D. & Stanek, K. Z. 2012, , 62, 23

Figure 1: The Spectral Energy Distributions (SED) of $\eta $Car now (blue solid line, Humphreys & Davidson1994), ObjectX (black solid line, Khan et al.2011), and M33VarA (black dashed line, Humphreys et al.2006). The black triangles mark luminosity at the IRAC band centers. Although $\eta $Car and ObjectX have similar luminosities up to 3.6$\micron$, the SED of $\eta $Car is steeply rising in the IRAC bands ($a$$\simeq 2.6$; Eqn.1) while ObjectX is almost flat ($a$$\simeq 0.2$; Eqn.1). ObjectX, and M33VarA (Humphreys et al.2006; Hubble & Sandage1953) are both dust obscured stars with comparable bolometric luminosities (Khan et al.2011), but in the IRAC bands, ObjectX is much more luminous ( $\sim 1.5\times 10^5 $L$_\odot $) than M33VarA ( $\sim 0.5\times 10^5 $L$_\odot $).
\includegraphics[angle=0,width=150mm]{Eta_sed.ps}

Figure: Integrated mid-IR luminosity $L_{mIR}$ as a function of the slope $a$ (Equation 1) for bright sources in M81. The vertical dashed lines show the slopes of blackbodies with the indicated temperatures and peak wavelengths (Equation 2). The top-right (thick red) box shows the candidate selection region ( $L_{mIR}>10^{5}\,$L$_\odot $ and $a>0$). The red triangles show the sources that also satisfy the third selection criteria, that at least 30% of the integrated mid-IR luminosity is emitted between 3.6 and 5.8$\micron$ ($f>0.3$). Of these, the open red triangles correspond to candidates that are known to be non-stellar in nature (see Sections 2.3 and 3.1), and the solid red triangles represent the surviving candidates. The green open circles show sources with $f<0.3$ and the black cross marks represent all the other sources. The narrow clump of points at $a\simeq -2.75$ correspond to normal stars with steeply falling mid-IR SEDs, while the wider clump of points to the right correspond to sources dominated by 8$\micron$ PAH emission. The top-left box shows the region $L_{mIR}>10^{5.5}\,$L$_\odot $ and $a<-1$ that was used to select normal stars in the M33 image (see Figure5). The labeled blue points represent objects not in M81 that are shown for comparison: ObjectX (``X'', solid square), the compact cluster M33-8 (``C'', open square), M33VarA (``A'', large open circle), $\eta $Car (``$\eta $", open star), the Carina nebula excluding $\eta $Car itself (``$\eta -$", solid circle; Smith & Brooks2007), and the Carina nebula including $\eta $Car (``$\eta $+", spiked open circle; see Section2.4 and Figure6).
\includegraphics[angle=0,width=150mm]{m81_slope_lum.ps}

Figure 3: Integrated mid-IR luminosity $L_{mIR}$ as a function of the fraction $f$ of $L_{mIR}$ that is emitted between 3.6 and 5.8$\micron$ for bright sources in M81. The box shows the candidate selection region ( $L_{mIR}>10^{5}\,$L$_\odot $ and $f>0.3$). The red triangles show the sources that also satisfy the third selection criteria that the mid-IR SED slope (Equations 1) is either flat or rising ($a>0$). Of these, the open red triangles correspond to candidates that are known to be non-stellar in nature (see Sections 2.3 and 3.1), and the solid red triangles represent the surviving candidates. The green open circles show sources with $a<0$ and the black cross marks represent all the other sources. The narrow clump of points at $f\simeq 0.8$ correspond to normal stars with steeply falling (negative slope) mid-IR SEDs, while the wider clump of points at $f\simeq 0.25$ correspond to sources dominated by 8$\micron$ PAH emission. The labeled blue points are same as in Figure2.
\includegraphics[angle=0,width=150mm]{m81_frac_lum.ps}

Figure 4: Extragalactic contamination for M81. Here we show all sources from a 6deg$^2$ region of the SDWFS survey transformed to the distance of M81. The symbols, lines, and axis-limits are the same as in Figure2. In this SDWFS region, 449 ($\sim 75$deg$^{-2}$) sources pass our selection criteria, indicating that we should expect $\sim 13$ background sources meeting our selection criteria given our 0.17deg$^2$ survey region around M81. Note that very few of the contaminating background sources have properties comparable to $\eta $Car.
\includegraphics[angle=0,width=150mm]{Bootes_slope_lum.ps}

Figure 5: Mid and far-IR SEDs of the candidates in M33 (red lines) compared to the SEDs of normal stars with $L_{mIR}>10^{5.5}$L$_\odot $, which steeply falling SEDs (mid-IR slope $a<-1$, top left box of the Figure2). The dotted portions of the SEDs correspond to the MIPS 70 and 160$\micron$ flux upper limits. The SED of ObjectX is highlighted (red-black lighter dashed line) and $\eta $Car (black heavier dashed line) is shown for comparison.
\includegraphics[angle=0,width=150mm]{m33_SEDs.ps}

Figure 6: The SEDs of $\eta $Car (``$\eta $'', black triangles, Humphreys & Davidson1994), the Carina nebula excluding $\eta $Car itself (``$\eta $-'', blue squares, Smith & Brooks2007, and the entire dusty complex containing $\eta $Car and other massive stars including $\eta $Car (``$\eta $+'', red circles, Section2.4). The first two SEDs are spline interpolated and summed to produce the third. The SED of the compact cluster M33-8 (``C'', green dashed line, HST image in Figure10) is shown for comparison. In Figures 2, 3, and 4 we label these $\eta $, $\eta -$, $\eta +$, and ``C'' respectively.
\includegraphics[angle=0,width=150mm]{eta_complex.ps}

Figure 7: SEDs of four different classes of objects that met our selection criteria: a candidate dusty star in NGC2403, a star-cluster in M33, a QSO behind M81, and a galaxy behind NGC7793. Figure10 shows IRAC and HST images of the compact cluster and the galaxy.
\includegraphics[angle=0,width=150mm]{example_4.ps}

Figure: SEDs of sources that met our selection criteria but were rejected due to association with non-stellar sources. The dotted portions of the SEDs correspond to the MIPS 70 and 160$\micron$ flux upper limits. The SED of $\eta $Car (dashed blue line) is shown for comparison.
\includegraphics[angle=0,width=150mm]{rejected.ps}

Figure: SEDs of sources that met our selection criteria and were not rejected due to association with non-stellar sources. The dotted portions of the SEDs correspond to the MIPS 70 and 160$\micron$ flux upper limits. The SEDs of $\eta $Car (dashed blue line) and ObjectX (dot-dashed black line) are shown for comparison.
\includegraphics[angle=0,width=175mm]{selected.ps}

Figure: IRAC and HST images of the compact stellar clusters M33-5, M33-8, and M81-10, and the background galaxy N7793-2. The clusters are resolved in the HST images with FWHM of $0\farcs87\simeq4.1$pc (M33-5), $0\farcs77\simeq3.6$pc (M33-8) and $0\farcs34\simeq6.1$pc (M33-8). They are very luminous (few$\times 10^7\,$L$_\odot $) and their SED shapes are very similar to $\eta $Car (Figure9).
\includegraphics[angle=0,width=105mm]{hst.ps}

Rubab Khan 2012-10-28