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Results (continued)

Abstract Methodology (continued)
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theoretical analysis is available, simulation results are in good

the mode and frequency being excited
agreement with those predicted by thin-plate elastic theory for

* “Thru-Retlect’ calibration is performed to verify beam

in-plane shear, torsional, and compressional excitation, but * Cross and Lifshitz"*! provide analytical results for

, ; . model accuracy'®); accurate to -20 to -30 dB for torsional
differ more widely for out-of-plane shear excitement. These

excitement, < -40dB for 3 other acoustic modes

Calibrating the Cavity Model:

(phononic) thermal conductance across the junction. The * Cavity model is more difficult because determining which

transmission probability in the long-wavelength limit

transmission coefficients are used to characterize the quantized * In-plane, torsional, and compression excitation modes are

in close agreement with available theoretical predictions

results are discussed as they relate to phonon transport in far * QOut-of-plane excitation differs from theory for narrow

modes are excited for a certain beam excitation is

infrared wavelength cryogenic detectors. cavities but converges with theoretical predictions as cavity

nontrivial

. . width increases
* A Fourier transform is taken of the response along an edge

Introduction of the cavity, excited wavelengths are plotted as a function

TEs of excitation frequency to determine mode couplings Conclusions & Next Steps

* 'Transition-edge sensors
(TES) are the most
advanced technology

Psignal

1 * Model is established based on this coupling such that the

. o * Characterization of relationship between conductance and
cavity is large enough and mesh is fine enough to capture

Heat Capacity

. . temperature based on transmission through the junction is
all excited modes of interest

available for sensitive
Weak thermal link, §
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shown below. Conductance and temperature are
radiation detection

* Our application, the

normalized by g, = kg*nT/6h and ho:®/kg respectively,
where ®:° is the cutoft frequency of the first optical mode
* These simulations have given a reliable picture of the

detection of astrophysical Heat Sink (~240 mK)

far infrared radiation, requires ultra-sensitive TESs conductance through the junction; however, the beam and
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* Detector sensitivity is strongly dependent on the thermal cavity were assumed to be infinitely long, so it is only an

conductance of Silicon Nitride beams linking the sense

| h [ bath[1] approximation of a TES junction
element to a thermal bat

* Next step is to model phonon transport with the true

e We wish to characterize the thermal conductance across the 24/ (radim) 21/ (radim) geometry of the detector.

geometric junction between the beams and cavity

Torsional Compression

* Theoretical analysis of such a junction beyond the 2- Conductance Through Junction

3.6

dimensional case is not tractable

e We seek to obtain
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/ which can then be related to
Cavity Bea'“ thermal conductancel?!:
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* ‘Transmission is determined by placing a vibrational source
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and probe in the beam. The complex response U is related
to the response U, for a infinite beam by the relationship
U=U, +pUe®
* p =1 for a fixed end rather than a connection to a cavity

* 'Therefore p is defined
pl? = [(ur-1)/ (u- 1)

where u,_and u, are the response with a stress-free end and
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an attachment to a cavity respectively, normalized by U
Boundary Conditions:
* Perfectly matched layers (PMLs) are used to simulate

Having established reliable methods of modeling junction,

oA .. . . we evaluate transmission for frequencies to 8000 Hz
infinite or semi-infinite media u qu up ;

* COMSOL PMLs require a characteristic wavelength to

target for simulation of perfect absorption

excited in each of the four acoustic modes
* Cavities of geometry parameter B/b = 2, 5, and 20.2 are
evaluated, where B is cavity width and b is beam width

* Dispersion curves of the beam are generated with e T . .
* An infinite cavity is also simulated by using a curved PML

COMSOL Eigenmode Solver for the selection of such a

characteristic wavelength for each excitation mode and forming a 180 degree are around the junction as the

frequency. boundary of the cavity



