

- 1. Co-evolution of galaxies + BH to high redshift
- 2. Resolved studies of nearby galaxies + AGN

1. Co-evolution of galaxies + BH to high redshift

Demographics of AGN and galaxies unbiased by obscuration

No source confusion at long wavelengths

Detections at redshifts 0 < z < 5

Separate AGN from stellar emission in individual galaxies

Star formation and BH accretion rates unbiased by dust

JWST 0.06" at 1.6µm

Herschel 6.8" at 100μ m

Community vvorksnop

SPICE sees individual galaxies beyond the local universe

Herschel 6.8" at 100μ m

SPICE Far-IR Probe Extragalactic Science Extragalactic survey 1000 h, ~1 deg², F_{lim}~0.3 mJy, 50,000 gal+AGN

4.7 x 4.7 arcmin cutout from Herschel GOODS deep field and simulated SPICE observation of an area the same size.

1. Co-evolution of galaxies + BH to high redshift

2. Resolved studies of nearby galaxies + AGN

- Morphologies + feedback
- Sub-kpc structure of ISM mapped in important FIR tracers
- Match resolution of ALMA + JWST + ...

Completing wavelength coverage for local galaxies

FIR lines provide important, unattenuated diagnostics of ISM SPICE observations of local galaxies provide analogs for high-z galaxies seen with ALMA

SPICE maps at similar resolution of:

- [CII] 158 μm
- [OI] 63, 144 μm
- [NII] 122, 205 μm
- [OIII] 52, 88 μm
- Attenuation-free tracers of density, metallicity, heating/cooling rates, ionization parameter

HST

JWST PHANGS collaboration

SPICE resolves in situ planet formation around young stars, like PDS 70

Formation & Evolution of a Planetary System

~1200 publications: ~ 500 since 2015 (ALMA image) ~ 1200 publications:

~ 700 since 2005 (HST/Spitzer images) ~ 400 since 2012 (Herschel/ALMA image) A well resolved image has a long lasting legacy value!

SPICE Debris Disk Legacy Survey

Mature, stable phase: > 1 Gyr

SPICE will target ~100 known disks identified by prior infrared surveys within ecliptic latitudes of ±30° around different masses and ages of stars to probe the full duration of planetary system evolution.

resolve and explore a large sample of disks, opening up parameter space beyond other facilities. 50% of disks will be resolvable with 10+ beams.

What are the typical architectures of planetary systems?

Debris disks are two orders of mag fainter than PPDs! ALMA wavelengths are two orders of mag fainter than SPICE!

SPICE Provides Answers to Key Questions in Astro2020

E-Q1b. What Are the Typical Architectures of Planetary Systems?

- **E-Q1c.** How Common Is Planetary Migration, How Does It Affect the Rest of the Planetary System, and What Are the Observable Signatures?
- E-Q1d. How Does the Distribution of Dust and Small Bodies in Mature Systems Connect to the Current and Past Dynamical States Within Planetary Systems?
- **E-Q3d.** What Are the Key Observable Characteristics of Habitable Planets?
- **F-Q4.** Is Planet Formation Fast or Slow?
- **F-Q4a.** What Are the Origins and Demographics of Disk Substructures?

SPICE's multiwavelength, well-resolved debris disk survey around ~ 100 exoplanetary systems across different mass and ages of stars will provide constraints on these questions!