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Abstract

Introduction
Among the detection methods of exoplanets microlensing and transits give complementary results.
The microlensing detection gives the mass of the planet, but only the project semi-major axis at a
given epoch of the orbital revolution and not the radius. The transit method gives the radius and,
through the directly observed orbital period, the semi-major axis, but not the mass without the help
of amplitude of the radial velocity variation or astrometry of the star. The latter are sometimes not
possible because of the stellar activity and/or faintness.
Here I show that the Nancy Grace Roman Telescope will improve the mass determination with the
combination of the two methods.

The combination of microlensing and transits.
Let’s start from the sample of planets detected by microlensing. Some of them could also make a
planetary transit. Here I estimate the number of transiting planet in the sample of planets detected
by microlensing with the Nancy Grace Roman Telescope.

Consider a microlensing event consisting in the observation of the amplification of a background
star by a foreground star and its planet. From the analysis of the lightcurve one infers the masses
and of the planet and its parent star and the the projection of the planet orbit semi-major axis at the
time of the microlensing event.

Suppose that the inclination of the planet orbit is close to 90° so that it transits its parent star at
some point of its  orbital  revolution.  The transit  event will  be characterized by its  time internal
ΔT with respect to the microlensing event. As shown in Figure 1, ΔT is related to the orbital

period P by the relation 

ΔT=Pβ/2π                 (1)

for the lensing configuration (1) or , for the configuration (2), by

ΔT=P(π−β)/2π                (2)

It is also clear from Figure 1 that the planet semi-major axis a is related to projected star-planet
separation aPr at the time of microlensing by the expression

a=aPr /cosβ                (3)



Figure 1  Microlensing of the background star and transit of the parent star by the planet

Then, using the Kepler law P=2π √ a3
/GM * , one finds after some algebra, that the period P  can

be inferred from the observables ΔT , aPr and the mass M * of the foreground lensing star by
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Since  is aPr necessarily  smaller  than a,  the  period  P is  necessarily  larger  than

P=2π √ aPr
3

/GM* .

The transits may be detected by Roman itself, by Cheops, Euclid or later by Plato.

Probability of transits
For a single star-planet system, the geometric probability p of a transit

p=R* /a    (4)

The probability that, among N microlensing events, at least one leads to a transit is 

                                         p=1−∏
1

N

(1−pi)      (5)



where pi  is the probability of transit of the ith  event.
The  mean  expected  number  of  transits  is  then,  for  a  mean  2  AU  for  planets  detected  by
microlensing (Figure 2), and assuming a one solar radius for the parent star, 

p=1−∏
1

N

(0.9977)      (6)

Figure 2  Distribution of semi-major axis for microlensing planets

From the 238 planets detected by microlensing as of May 1st 2023, one gets p = 0.42 .

The expected number of transits is then given by 

 N transit=∑
1

N

pi=0.0023 N

If Roman detects 5000 microlensing planets with a semi-major axis distribution similar to Ogle,
MOA and KMT campaigns, 13 of them should present a transit.
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