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Abstract: Although there are estimated to be 100 million isolated black holes (BHs) in the Milky
Way, only one has been found so far, resulting in significant uncertainty about their properties.
The Galactic Bulge Time Domain Survey provides the only opportunity in the coming decades to
grow this catalog by order(s) of magnitude. This can be achieved if 1) Roman’s astrometric
potential is fully realized in the observation strategy and software pipelines, 2) Roman’s
observational gaps of the Bulge are minimized, and 3) observations with ground-based facilities
are taken of the Bulge to fill in gaps during non-Bulge seasons. A large sample of isolated BHs
will enable a broad range of astrophysical questions to be answered, such as massive stellar
evolution, origin of gravitational wave sources, supernova physics, and the growth of
supermassive BHs, maximizing Roman’s scientific return.
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Summary of needs and recommendations to find black holes
In order to find black holes, the needs of the Galactic Bulge Time Domain Survey (GBTDS)
beyond the notional design are:

- Precise relative astrometry (optimal 0.1 mas, minimal 0.3 mas) over the full field of view
- Minimization of Roman’s observing gaps: placing as many seasons consecutively as

possible; additional Bulge seasons beyond the notional 6 for the GBTDS (optimally have
at least daily cadence)

- Continuous observations of the Bulge from the ground; data must be public with no
proprietary period to enable follow-up; majority of observations optimally taken in the IR.

We thus make the following recommendations (a summary of the minimal and optimal strategies
is summarized in Table 1):

- Roman observations during Bulge seasons that are current gaps in the notional GBTDS
- Ensuring relative astrometry is included as a driving science requirement during survey

design and software/pipeline development
- Coordinating observations with ground-based IR facilities, in particular PRIME

Black holes allow us to understand how the Universe works
Stellar-mass black holes (BHs) are an end product of stellar evolution formed when massive
stars exhaust their fuel and gravitationally collapse. The number, mass function, velocity
distribution, and binary fraction of BHs are key to understanding how they form, evolve, and
interact. BH properties are an observational boundary condition of stellar evolution (Figure 1)
needed to test the highly uncertain physics of massive star death, such as implosion/explosion
mechanisms [1-4], natal kicks [5-9], and the types and importances of different binary
interactions [10-13]. In turn, these are needed to understand chemical enrichment, gravitational
wave sources, galaxy formation and evolution, and supermassive BH growth.

Despite their importance to a broad range of astrophysics, the basic properties of the Galactic
BH population are almost entirely unknown. Although there are expected to be 107 - 109 BHs in
the Milky Way with >80% of those being isolated [14-19], all but one of the two dozen
Galactic BHs with mass measurements reside in binaries [20-27]. This highly biased
sample hinders our ability to understand massive stellar evolution and related
astrophysics. Isolated BHs are also needed to understand the rapidly growing catalog of
merging BHs detected via gravitational waves [28]. Merging BHs are a rare outcome of
stellar evolution, where the formation channel(s) are highly sensitive to uncertain physics and
initial conditions [29-31]. Only a catalog of “ordinary” isolated BHs can avoid these evolutionary
biases, probe the dominant BH formation channel(s), and contextualize the “extraordinary”
population of merging BHs. Gravitational microlensing is the only practical way to find and
characterize isolated BHs (Figure 2), with the first such measurement made last year [25-27].

Isolated BHs should be a driving science case in designing the GBTDS. First, they are key to
understanding a broad range of astrophysics. At present, BHs are not part of Roman’s main
science objectives (cosmology and exoplanets); inclusion of BHs and compact objects
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maximizes the science return of the mission. Second, the majority of the observations needed
are identical to those required for exoplanetary microlensing; a search for BHs with microlensing
naturally fits into the same survey. Third, the observations will be of broad utility: in addition to
finding BHs, they will improve our understanding of Galactic structure [32-35], characterize
longer-duration IR transients [36], and enable proper motion/astrometry studies [37-40].

Roman is the best way to find many isolated black holes
Roman’s wide field of view and ability to simultaneously obtain precise photometry and
astrometry can enable the GBTDS to grow the catalog of isolated BHs by orders of magnitude,
given the current sample size of one. No other facility in the next several decades can
achieve this goal. Ground-based surveys cannot achieve the requisite spatial resolution or
depth; as they are seeing-limited, it is difficult to detect photometric microlensing parallaxes and
impossible to measure astrometric microlensing signals, both of which are necessary to
measure BH masses and velocities. Targeted follow-up to obtain astrometry with facilities like
Keck + laser guide star adaptive optics or Hubble Space Telescope (HST) is observationally
expensive, and thus is limited in the number of candidates that can be followed up [25-27, 41]; it
can only grow the sample by a few over 5 years. HST cannot perform a GBTD-like survey
because its field of view is 100x smaller, nor is it optimized for quick slew/settle, making it
prohibitive to observe at a cadence needed to characterize a significant number of microlensing
events [42]. And although Gaia has exquisite astrometry, it does not perform well toward the
Bulge due to crowding and extinction [26, 43]; it can find at most a few isolated BHs [44].

The GBTDS can detect hundreds of BHs via microlensing. Given the notional GBTDS design,
[45] predicted 3x105 microlensing events will be detected. BH lenses account for ~1% of all
microlensing events [46, 47]; the other 99% comprise stars (which can host planets), white
dwarfs, and neutron stars. Accounting for uncertainties in both Galactic models and the
order-of-magnitude number of BHs, a very conservative lower estimate still predicts at least 300
BHs detected by Roman. Properly designed, the GBTDS will be able to measure the masses
and velocities for a significant number of these BHs, which will grow the existing sample by
orders of magnitude and help answer fundamental questions in stellar astrophysics, such as the
magnitude of BH natal kicks [48] and the initial-final mass relation of massive stars [49].

Enabling Roman to uncover the isolated black hole population

Differences between finding exoplanets and black holes with microlensing
The design of the GBTDS needed to meet the exoplanet detection requirements also make it
excellent for finding BHs with microlensing. The “non-negotiables” to meet the exoplanet
requirements are a monitored area of ~2 deg2, at least 6 x 60 day seasons, with a cadence of at
least 15 minutes, and the longest possible total time baseline (see Appendix for a summary).

However, the strategies for finding BHs and exoplanets are not identical. First, because the
lensing timescale is proportional to the square root of the lens mass, a microlensing event due
to a 10M☉ BH lens is on average 100x longer than that due to a 1MJ planetary lens (Figure 3).
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BH events will not be completely observed by Roman due to the gaps in Bulge visibility (Figure
4). In addition, the fiducial GBTDS design has a ~2.5 year gap between the first three and last
three Bulge seasons. Minimizing the gaps by having some observations during all Bulge
seasons and placing as many seasons consecutively as possible can help mitigate this. Having
ground-based observations when Roman cannot see the Bulge will also be crucial to
characterizing BHs and modeling events with sparse lightcurve coverage. The PRIME telescope
would be ideal, as it has the same detectors as Roman. However, synergies with other facilities
from ground and space, including Rubin, JASMINE, and ULTIMATE-Subaru would be beneficial,
as they are highly complementary to PRIME in depth and wavelength. The data from these
synergistic surveys also need to be publicly available with no proprietary period, like the Roman
data, to announce and enable follow-up by the community.

Second, the astrometric signals of BHs and exoplanets are very different. Like the timescale, the
astrometric signal is proportional to the square root of the lens mass, so on average a 10M☉ BH
lens will produce an astrometric shift 100x larger than a 1MJ planetary lens. Although planetary
astrometric shifts are too small to be detectable, those of BHs are detectable with Roman
(Figure 5). Precise relative astrometry is crucial for BH microlensing studies as it enables their
masses to be measured: it is impossible to measure lens masses with photometry alone
because of a fundamental degeneracy between lens mass and proper motion. We note that
astrometry is also important for the exoplanetary science cases, but the needs (e.g. measuring
lens and sources separating several years after the event) are different than BHs.

Survey design: trade space, metrics and figures of merit
Table 1 summarizes the minimal and optimal observational strategies for enabling BH searches
with microlensing, given the bounds imposed on the GBTDS by the exoplanet requirement. It is
very similar to the notional design; the additions are relative astrometry requirements. Figure 6
shows the number of characterizable BHs as a function of astrometric precision. The minimal
strategy would yield a few 10s of BHs, while the optimal strategy would yield a few 100s.

Having as many Bulge seasons arranged consecutively as possible is critical for BH searches,
and the ~2.5 year gap in the notional design needs to be filled. At minimum, observations with
an astrometric precision of 0.3 mas (i.e. 10 exposures stacked, for single exposure precision of
1 mas) at a weekly cadence within each Bulge season are needed to properly sample the
astrometry. In addition, concurrent observations of GBTDS fields with ground-based facilities will
be crucial for photometric coverage of the full lightcurve; their Bulge observational duty cycle of
~75%, vs. Roman’s ~40% is important for covering long-duration BH events.

Although increasing the survey area will linearly increase the number of BHs detected, this
comes at the strong expense of characterization. If there is a choice between filling Bulge
season observational gaps in existing fields vs. adding new fields at a sparse (>1 day) cadence,
the former will be significantly better for the yield of characterizable BHs.

Finally, Table 2 lists synergies with other white papers and pitches that detail topics we only
briefly mention in this white paper.
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Figure 1: A representative sample of black holes is needed to
understand their formation and population properties

In order to understand massive stellar evolution, the stellar progenitor properties, environment,
and evolution must be connected to the resultant BH. Presently, the impact of initial conditions
and interactions on the resultant BH system are very uncertain. Although ~200 stellar-mass BHs
have been detected to date, the vast majority are from extragalactic mergers detected via
gravitational waves [28], which represent a very rare and exotic evolutionary channel. Even the
majority of the ~30 detected BHs in our own Milky Way and Magellanic clouds are in
close and highly interacting X-ray binaries, another rare outcome [20-24, 50-52]; their
properties cannot be used to infer those of the full Galactic BH population [53-55].

In addition, isolated BHs are more likely formed with less (or no) mass transfer phases, which
can help with mapping their pre-supernova stellar properties and understanding supernova
physics, and are also a unique probe of BHs in disrupted binaries. Roman can add up to a few
hundred isolated BH mass measurements to this sample and ameliorate this issue.

7



Figure 2: Gravitational microlensing can characterize isolated black
holes

Gravitational lensing is the ideal way to detect isolated BHs, as the phenomenon depends on
the mass, and not the luminosity, of the foreground lens. In the Milky Way, gravitational lensing
occurs when a background source star (usually in the Bulge) and a foreground lens (star or
compact object) coincidentally align along an observer’s line of sight. The lens deflects the light
from the background source and produces two lensed images.

For lens masses and distances typical of the Galaxy, the lensed images are separated by <1
mas, and hence are unresolvable in the optical/IR. As the background source and foreground
lens move, align and separate, the observer instead sees a single unresolved star that appears
to temporarily brighten (Figure 4) and shift position (Figure 5).

The mass and transverse velocity of the lens can be measured by jointly modeling both the
brightening (photometric microlensing) and shift (astrometric microlensing). If the lens is >5M☉
and a star can be ruled out (e.g. the lens is very luminous), then the lens can be confirmed as a
BH. For more details on the methodology, see [26]; for discovery papers, see [25, 27].

Having astrometry is crucial in measuring the lens mass and velocity; with photometry
alone, this is not possible due to a fundamental degeneracy between the mass and velocity of
the lens. Although there have been several excellent BH candidates over the past 20 years,
they cannot be confirmed because there were no astrometric measurements [56-57].

For more background information on photometric and astrometric microlensing, see [58-62].
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Figure 3: Microlensing timescales of exoplanets vs. black hole lenses
Schematic of the distribution of Einstein crossing times tE for exoplanets (blue) vs. BHs (black).
For comparison, stellar lenses are shown in the dashed gray line. Note the logarithmic scaling
on both the x and y axes. The typical lensing timescales of BHs are 100x longer than that
of exoplanets. Figure based upon a combination of [47, 63].
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Figure 4: Microlensing lightcurves of exoplanet vs. black hole lenses
Two examples of planetary microlensing lightcurves. Left: 0.5 MJ planet separated 1.5 AU from
its 0.25M☉ host star. Right: 1.8 MJ free floating planet. Figures adapted from [45, 63]. The entire
lightcurve can fall within a 72 day Bulge window.

Example of a BH microlensing lightcurve. The lightcurve is sampled at the GBTDS
notional/minimal strategy (left), GBTDS optimal strategy (middle), and a ground-based cadence
(right). The uncertainties are representative of Roman [45] and PRIME [64]. Unlike exoplanet
events, whose lightcurves span ~10 days, BH events span several hundreds of days (note the
x-scale below is years, while in the plots above it is days).

Roman’s photometric precision is much better than ground-based surveys. However, due to the
large ~2.5 year gap between Bulge windows in the notional GBTDS design, most BH
lightcurves will not be fully observed. Filling in the gaps will significantly help
characterization. Finally, ground based coverage will help by filling in Roman’s bulge windows,
which will be critical to issues like microlensing degeneracies and model mismatches.

10



Figure 5: Astrometric microlensing, now vs. anticipated with Roman
Astrometric microlensing signal of a 9.4M☉ BH with an Einstein radius of 2 mas (corresponding
to a maximum astrometric shift of ~0.7 mas) as would be detected by Roman. The simulated
observations (black) assume 1 mas astrometric uncertainties for each individual exposure [65].

Left: astrometric signal as observed with the minimal/notional GBTDS. Right: astrometric signal
as observed with the optimal GBTDS. During the 6 exoplanet-focused seasons, 4 days of
observations at 15 min cadence are stacked to achieve ~0.05 mas precision; during the
additional 4 seasons, 12 days of observations at 1 day cadence are stacked to achieve ~0.3
mas precision. Filling in the gap is critical to detecting the maximal astrometric signal,
which is needed to measure lens masses and velocities. Including the 4 Bulge seasons
increases the astrometric duty cycle by 60%.

Note: the wiggles in the non-lensing model are due to parallax (which primarily shows up in the RA toward the Bulge).

We contrast this to current capabilities achievable using follow-up methods, where each target
has <10 astrometric epochs and astrometric precisions ~0.3 mas. Left: Keck 10-m telescope
equipped with laser guide star adaptive optics. Right: HST. Figures adapted from [25, 41].
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Figure 6: Astrometric precision vs. number of detectable black holes
The number of BHs characterizable by Roman, as a function of the stacked astrometric
precision. The y-axis assumes 300 total BHs in the Roman survey, as described on page 5. The
bottom x-axis shows the maximum astrometric shift signal of the microlensing event. The top
x-axis shows the corresponding precision needed to measure the astrometric signal; we
assume the precision needed is 3 times smaller than the maximum signal1.

Roughly 270 BH microlensing events have maximum astrometric shifts of at least 0.3
mas, and these can all be characterized if the astrometric precision is 0.1 mas (red line
and arrow). If the astrometric precision is instead 0.3 mas, then only about 30 of the BH
microlensing events can be characterized (blue dotted line and arrow); this is still an order of
magnitude more than the current sample size of 1 isolated BH.

For reference, we also show the corresponding curve for isolated neutron stars (NS). Many of
the reasons that make isolated BHs astrophysically interesting are also true of NSs, in addition
to the potential to answer questions related to the maximum NS mass and their equations of
state. Although there are an order of magnitude more NSs than BHs in the Galaxy, the total
lensing cross section of all NS is only about a factor of 1.5 larger than all BHs because of their
lower mass. NSs also have astrometric shifts about 2 times smaller than BHs. Hence, a
significant sample of isolated NSs will not be detectable by Roman unless the optimal
astrometric precision of 0.1 mas is achieved.

1 This depends on the sampling cadence and how the lightcurve is constrained; this estimate is based on
the results of [25], which measured a 1.5 mas maximum shift with precisions of 0.3 mas, corresponding to
a factor of 5, with only 10 total observations. A factor of 3 is conservative, given that there will be many
more observations by Roman.

12



Table 1: Observational strategy for the GBTDS
We assume that for the GBTDS to meet its core exoplanetary science goals, there must be at
least 6 x 60 day seasons, with a cadence of at least 15 minutes, and observations during the
first two and last two available Bulge window, over ~2 deg2 (see Appendix A for a summary).

In the table below, green boxes denote strategies the same as the notional GBTDS; yellow
boxes denote minor additions and changes to the notional GBTDS; orange boxes denote
strategies not specified by the notional GBTDS.

Strategy/parameter Minimal Optimal

Depth of each epoch Same as notional

Number of epochs
and time between
individual epochs

Same as notional: 6 seasons
of 60 days, with continuous 15
minute sampling

10 seasons (for the 4 non-exoplanet
focused seasons, average ~1 day
sampling cadence); 72 day seasons

Temporal baseline,
first to last epoch

Same as notional: maximal, i.e. require observations in the first two
and last two Bulge seasons

Uniformity of time
between individual
epochs

Same as notional: Uniformity not crucial as there will be unavoidably
large gaps by nature of the observatory; as continuous as possible
coverage during available windows is the key.

Final co-added depth Same as notional

Total survey area Same as notional: ~2 deg2 As many fields as can be sustained
where the cadence does not drop
below ~ 1 day on average.

Locations of
surveyed areas

Same as notional: regions of
relatively low extinction in the
Bulge

Inclusion of field(s) closer to b = 0
deg and Galactic Center where event
rate is higher.

Specific filters Same as notional: widest possible (F146) for photometric precision

Number of filters Same as notional: occasional (~ twice per season) observations in
another filter to do CMDs, but not regularly as observations in the
narrower filters will have worse photometric/astrometric precisions.

Subpixel dithering See WFIRST Astrometry Working Group white paper [65]

Large gap dithers See WFIRST Astrometry Working Group white paper [65]

Ground-based
coverage

Observations ~ 1/night, during
all times the Bulge fields are
visible from Earth

Observations ~ 10/night, during all
times the Bulge fields are visible from
Earth

Astrometric precision
(10 day average)

0.3 mas (e.g. what is
achievable with HST now)

0.1 mas
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Table 2: Synergies with other white papers and pitches
The following white papers and pitches describe in more detail some of the topics we mention
briefly or in passing.

Topics and synergies References (Roman CCS white
papers and pitches marked with *)

Characterizing isolated stellar-mass black holes with
microlensing

[66*, 67*, 68*, 69*]

Stellar-mass BHs in binaries and other compact objects [70*, 71*, 72*]

Observations at the Galactic Center [67*, 72*, 73*, 74*]

Improved Roman coverage during Bulge seasons [68*, 75*]

Coordinated observations with other facilities existing and
upcoming (PRIME, Rubin, JASMINE, ULTIMATE-Subaru2)

[67*, 72*, 76*, 77*, 78]

Importance of astrometry [65, 66*, 72*]

Below is a list of reference material for the listed facilities:

PRIME: 1.8-m telescope that has just begun (2023) a NIR microlensing survey of the inner
Galactic bulge to help design the observing strategy for Roman’s exoplanet microlensing survey

● Website: http://www-ir.ess.sci.osaka-u.ac.jp/prime/index.html
● See also [64]

Rubin: 8.4-m telescope that will conduct a 10-year survey of the Southern sky beginning ~2025
● Website: https://rubinobservatory.org/

ULTIMATE-Subaru: next-generation wide-field ground-layer adaptive optics development project
on the 8.2-m Subaru Telescope; wide field instrument first light ~2027

● Website: https://ultimate.naoj.org/english/index.html

JASMINE: planned M-class mission by ISAS/JAXA, launch planned ~2028
● Website: http://www.scholarpedia.org/article/JASMINE

2 Short slide deck for reference (“Science Goal (2): ULTIMATE for Transient Universe”):
https://ultimate.naoj.org/superirnet/WS2023_talk_online/20230323_ULTIMATE_science_goals_koyama_p
ublic.pdf
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Appendix: GBTDS exoplanet requirements and notional design
For reference, we provide a summary of the mandatory constraints on the GBTDS needed to
achieve the exoplanetary microlensing science requirements; the points below are copied from
slides by Karoline Gilbert (Mission Scientist, Roman Mission Office).

Microlensing needs:
● Monitor hundreds of millions of bulge stars continuously on a time scale of <15 minutes
● Minimum 60 day seasons
● Precise Relative Photometry
● Resolve main sequence source stars for smallest planets.
● Resolve unrelated stars for lens flux measurements.
● Longest possible time baseline for proper motion measurements

Bounding conditions for GBTD Survey:
● Cadence of repeat visits and S/N per visit must be sufficient for sensitivity to the chosen

range of planet masses (0.1 - 10000 *MEarth) in the Science Requirements Document.
● Area/cadence trade should provide monitoring for a minimum of 600 sq-degree-days,

distributed over 6 seasons.
● The duty-cycle for observations devoted to this survey must be greater than 80% during

each season.
○ This includes time required for momentum unloading and station-keeping (~9

hours/month or ~1.25%) and any other mission overheads.

Scheduling considerations -GBTD Survey
● Want continuous coverage of a particular field for entire visibility period

○ ⪯72 days, Spring and Fall (DRM is 62 days, Penny et al is 72 days)
● Visits at 15-minute cadence for the core survey

○ This does not preclude adding additional fields with a equal (or longer cadence)
○ Or increasing the cadence for one of the fields

● Longest possible total time baseline
○ accurate proper motions (broad science benefit)
○ maximizing separation of stars in lensing events

For reference, we also summarize the notional design of the GBTDS, as described at this page:
● Survey area: 7 WFI fields (~ 2 deg2 total)
● Survey cadence: 15 minutes
● Survey season duration: 62 days
● Number of seasons: 6 (3 at the beginning of survey, and 3 at the end of survey)
● Filter: F146 primary, bluest filter (every 12 hours)

Note that the maximum 72 day survey season duration is determined by when the Galactic
Bulge is visible to Roman.
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