

Mission Objectives → Core Community Surveys

- "Level 1" Mission Objectives leading to CCS:
 - Conduct near-infrared (NIR) sky surveys in both imaging and spectroscopic modes, providing an imaging sensitivity for unresolved sources better than 26.5 AB magnitude.
 - **2. Determine the expansion history of the Universe** using GRS, WL, & SN, at redshifts up to z = 2 with high-precision cross-checks between techniques.
 - 3. Determine the growth history of the largest structures in the Universe using WL, RSD, & Galaxy Clustering, at redshifts up to z = 2 with high-precision cross-checks between techniques.
 - 4. Carry out a statistical census of exoplanets from the outer habitable zone to free floating planets, including analogs to all of the planets in our Solar System >MMars, using microlensing.
- These have led to the present concepts for the High-Latitude Wide-Area Survey (HLWAS), the High-Latitude Time Domain Survey, and the Galactic Bulge Time Domain Survey.
- The present HLWAS addresses Objective #1 by design, but one can imagine a survey more narrowly focused on Objectives #2, 3 that did not do so.
 - In that case an additional CCS would have to be defined to address Objective #1.

Survey concepts developed thus far

- The Formulation Science Working Group (FSWG) and predecessors developed survey concepts that address the mission objectives, with our best understanding to date of astrophysical and instrumental systematic effects.
- In most cases there are already one or more alternative survey concepts deserving further study*
 - There is room for further optimization within the context of any single mission objective
 - And even more room for optimization in light of opportunities for pursuing unrelated science investigations

^{*} Info on motivations for survey design and some alternative concepts can be found in the talks from this workshop: https://roman.gsfc.nasa.gov/science/workshop112021/

Defining the CCS

- The only requirement: the CCS satisfy the mission objectives
- In more concrete terms, the CCS must satisfy the more detailed requirements in the Science Requirements Document
- The Project will work closely with the CCS study groups in assessing survey concepts and providing whatever information may be needed to develop them.
- Starting with a truly blank slate is not helpful, as that can lead to a lot of wasted time
 - Want to leverage the work done to date
- However, we want to avoid being unnecessarily prescriptive, and avoid preempting innovative thinking.
- Hence we give some suggested boundary conditions on the following slides.

Boundary Conditions for HLWAS

HLWAS – both imaging and spectroscopy

 The survey area should be contiguous, or consist of at most a small number of independent contiguous regions

HLWAS – Imaging

- Dithering strategy must provide good PSF sampling.
- Tiling strategy in each filter must enable photometric self-calibration
- Area/Depth trade must provide > 10⁸ galaxies in at least one filter at S/N sufficient for shape measurement (minimum, goal is >3*10⁸ galaxies)
- Survey area must have data in optical bands appropriate for photo-z, (e.g. Rubin or Subaru HSC)
- It is highly desirable for the shape measurements to be made in more than one NIR filter to enable tests of wavelength-dependent systematics.
 - · Can relax this if new data (Euclid, Rubin) tells us otherwise

HLWAS – spectroscopy

- Depth/area trade must yield > 10^7 emission-line galaxies with limiting line flux of 1.e-16 erg/cm²/s at 6.5 σ
 - Can consider relaxing to $\sim 5\sigma$ if it can be shown that sample purity is adequate.
- Survey area must overlap with imaging data in at least 1 NIR filter with a depth suitable for source localization.
- Roll angle selection must serve to separate sources overlapping at any single orientation.
- Roll angle selection must include near-180 degree offset to remove effects of emission line regions being separated from center of continuum emission,
 - Can relax this if new data or analysis shows this is not necessary.

Boundary Conditions for GBTDS

- Cadence of repeat visits and S/N per visit must be sufficient for sensitivity to the chosen range of planet masses (0.1 - 10000 *M_{Earth}) in the Science Requirements Document.
- Area/cadence trade should provide monitoring for a minimum of 600 sq-degree-days, distributed over 6 seasons.
- The duty-cycle for observations devoted to this survey must be greater than 80% during each season.
 - This includes time required for momentum unloading and station-keeping (~9 hours/month or ~1.25%) and any other mission overheads.

Boundary Conditions for HLTDS

- Cadence, depth/area trade, choice of filters must provide a suitably large sample of SNIa in a redshift range sufficient to meet the desired precision on luminosity distance vs. redshift.
- Location of survey must be in the continuous viewing zone to provide uninterrupted light curves, and in an area with low Galactic extinction.
- Tiling strategy in each filter must enable photometric selfcalibration
- There must be greater than 100 SNIa in each delta-z=0.1 redshift bin with data suitable for the cosmological distance analysis.

Boundary conditions caveat

- The boundary conditions on the preceding 3 slides are intended to be suggestive, not definitive.
- They are not sufficient in themselves to define an adequate CCS, but they illustrate where we have flexibility and where deviations would require increasingly strong justification.

Representative Surveys

Cumulative point-source depth in wide-area surveys:

HLWAS

Wide 2000 deg²

Deep 20 deg²

Imagining in 4 filters (5σ)

AB ~26.5

AB ~28.2

- Grism $(6.5\sigma \text{ line flux } 1.8\mu \ 0.2\text{"r}_{\text{eff}})$ $8 \cdot 10^{-17}$ 3.10^{-17}

HLTDS (5-day cadence)

Wide

Deep

Imaging in 4 filters (5 σ) AB ~28.1 19 deg²

AB ~29.2 4.2 deg²

Prism (10 σ continuum) AB ~25.3 3.3 deg²

AB ~26.1 1.1 deg²

There are many possible SN survey implementations!

GBTDS:

- Monitor 2+ deg² of the Galactic Bulge, 15-minute cadence over ~70-days, S/N=100 @ AB=21.4 per visit
- Exoplanet detections by microlensing, other time-domain astronomy,
- Precision astrometry (tens of micro-arcsec)

Scheduling considerations - 1

High Latitude Wide-Area Survey

- No cadence requirements per se
- Spectroscopic survey will want observations of any given field at roughly opposite dispersion directions
 - Have only one grism, so schedule revisits separated by ~6 months
- Want survey regions to be contiguous, or at minimum not split into many sections
 - Could imagine a region in South and another in North perhaps

High Latitude Time-Domain Survey

- Want continuous coverage of a particular field for ~ 2 years → CVZ
- Visits at 5-day cadence

Galactic Bulge Time Domain Survey

- Want continuous coverage of a particular field for entire visibility period
 - ≤72 days, Spring and Fall
- Visits at 15-minute cadence
- Longest possible total time baseline
 - accurate proper motions and maximizing separation of stars in lensing events

Scheduling Considerations - 2

- Likely layout over 5-year mission
 - BGTDS seasons Spring and Fall of first year and last year, 2 more somewhere in between
 - HLTDS campaign somewhere in years 2-4 to avoid conflicting with GBTDS campaigns
 - HLWAS can be distributed throughout
 - General Astrophysics observations can be distributed throughout
- The FSWG surveys were designed with conservative performance assumptions. As we move forward we will design the CCS with current best estimate performance. This will result in more powerful and/or more efficient surveys.

Summary

- The CCS are required to meet the mission objectives.
- There is considerable flexibility in the design of the CCS.
- We want to take advantage of that to make the CCS as broadly useful as we possibly can.
- We will work closely with the community in the coming years to make this a reality

QUESTIONS?

The Design Reference Mission

What the DRM is:

- A required product at major mission reviews
- An existence proof that mission objectives can be met in the required mission lifetime
- A mechanism for the iterative refinement of mission requirements
- A tool for exercising the ground system & flight software
 - Does proposal system support all the observing modes?
 - Can planning/scheduling tools build the timeline & command loads?
 - Will command loads execute on the spacecraft & instrument simulators?
 - Does observing efficiency in simulator match expectations?
 - Can we downlink all the data and transfer through the ground networks?
 - Does telemetry support data processing of all observing modes?
 - Are pipeline products properly ingested into the archive?

The Design Reference Mission

What the DRM is:

- A required product at major mission reviews
- An existence proof that mission objectives can be met in required lifetime
- A tool for exercising the ground system
 - Does proposal system support all the observing modes?
 - Can planning/scheduling tools build the timeline & command loads?
 - Will command loads execute on the spacecraft & instrument simulators?
 - Does observing efficiency in simulator match expectations?
 - Does telemetry support data processing of all observing modes?
 - Are pipeline products properly ingested into the archive?

What the DRM is not:

The actual observing plan