LUVOIR: UPDATE ON ARCHITECTURE "A" DESIGN PROGRESS

Presented to: The LUVOIR STDT

Matthew R. Bolcar April 17, 2017

Matt's Laptop at about 6pm yesterday

Matt's Laptop at about 6pm yesterday

We will study two architectures in depth...

• Architecture A (first half of 2017)

- 15-m diameter aperture
- Four instrument bays:
 - Optical / NIR Coronagraph (A)
 - UV Multi-object Spectrograph ("LUMOS")
 - High-definition Imager (will also perform guiding / wavefront sensing)
 - Pollux: UV Spectro-polarimeter and High-Resolution Spectrograph (CNES Contributed)

• Architecture B (late 2017 into 2018)

- ~9-m diameter aperture
- Three instrument to be studied:
 - Optical / NIR Coronagraph (B)
 - UV Multi-object Spectrograph ("LUMOS")
 - Optical / NIR Multi-resolution Spectrograph

Three Teams Providing Engineering & Design Support

- Integrated Design Center (IDC):
 - Comprised of the Optical, Instrument, and Mission Design Labs (ODL, IDL, MDL)
 - Concurrent engineering environments for rapid development of a broad, baseline point design
- Study Office Engineering Team
 - Shadow IDC efforts and provide depth of analysis and additional design where IDC is unable to
 - This engineering team ultimately "owns" the final LUVOIR design
- Industry Team (via Cooperative Agreement Notice)
 - Lockheed Martin, Northrop Grumman, Ball Aerospace, Harris
 - Leverage expertise & specialized skills to address key elements of the design study
 - Deployments, I&T, Vibration Isolation, Error Budgeting, Straylight Analysis, etc.

IDC Study Schedule (2017):

- Jan. 17–24 Telescope Instrument Design Lab (IDL)
 - Pre-work 1/10
- ✓ Feb. 6–10 HDI IDL
 - Pre-work 1/31
- ✓ Mar. 20–24 Coronagraph IDL
 - Pre-work 3/14
- May 15–19 LUMOS IDL
 - Pre-work 5/9
- June 7–13 Instrument Accommodation IDL
 - Pre-work 6/1
- July 10–14 LUVOIR "A" Mission Design Lab (MDL)
 - Pre-work 7/5
- Sept. 11–15 LUVOIR "B" Optical Telescope Element IDL
 - Pre-work 9/6
- Oct. 10–16 LUVOIR "B" Instrument 1 IDL
 - Pre-work 10/3

Study Schedule 2017

Design Overview: Observatory Level

(placeholder sunshield and spacecraft)

Basic Dimensions (meters)

Basic Dimensions (meters)

"Yep, it's big."

Credit: Drew Jones

Design Overview: Optical Telescope Element (OTE)

LUVOIR "A" OTE Specifications

- Instantaneous Field-of-View: 10 arcmin x 8 arcmin
- Instantaneous Field-of-Regard: 2π sr, anti-sun
- Mirror Coating: AI + LiF + thin protective overcoat of MgF_2 or AIF₃
 - Approx. Reflectivities:
 - 65% @ 105 nm
 - 91% @ 115 nm
 - Average 85% 115 nm 200 nm
 - Average 88% 200 nm 850 nm
 - $\circ~$ Average 96% 850 nm 2.5 μm

LUVOIR "A" OTE Specifications

- Instantaneous Field-of-View: 10 arcmin x 8 arcmin
- Instantaneous Field-of-Regard: 2π sr, anti-sun
- Mirror Coating: AI + LiF + thin protective overcoat of MgF_2 or AIF₃
 - Approx. Reflectivities:
 - ∘ 65% @ 105 nm
 - 91% @ 115 nm
 - Average 85% 115 nm 200 nm
 - Average 88% 200 nm 850 nm
 - $\circ~$ Average 96% 850 nm 2.5 μm

LUVOIR "A" OTE Specifications

- Pointing stability provided by Fine Steering Mirror and Vibration Isolation and Precision Pointing System (VIPPS):
 - Repeatability / Step Size: 1 mas
 - Stability: +/- 0.33 mas during an observation
- Tracking capability provided by VIPPS:
 - 60 mas / s
 - JWST is 30 mas / s
- Slew capability provided by spacecraft and gimbal system
 - Work in progress
 - Targeting a 90° / 45 min. with a goal of 90° / 30 min.
 - JWST is 90° / 60 min.

LUVOIR "A" Telescope Optical Design

LUVOIR "A" Telescope Aperture

- 1.15-m flat-to-flat segments (120x)
- Central ring of array removed to accommodate Aft-optics & Secondary Mirror Obscuration
- Effective area is 135 m²
- Assumes 6 mm gaps

OTE Focal Plane Allocations

Field Coordinates on Sky (°)

Closed-loop Control of PM Segments

• Edge sensors:

- Capacitive, inductive, or optical
- Provides fast measurements of segment rigid body motions at picometer level
- Baselined for ground-based systems (TMT, GMT, EELT, Keck)
- Lab demos show sensitivity at the 10 pm level
- Piezoelectric (PZT) fine-stage in segment actuators
 - Respond to edge sensor data to move mirror segments
 - Range of PZT motion is hundreds of picometers; mechanical linkage reduces that motion to single digit picometers
- Closed-loop system creates a "virtual monolith"
- Technology challenges for LUVOIR
 - Read-out electronics for high-speed, single digit accuracy
 - Verify motion reduction with mechanical linkage

High Definition Imager Design

HDI Technical Overview (1/2)

- Two-channel Imaging Instrument:
 - UV/Vis Imaging (200 nm ~1.0 μm)
 - Diffraction-limited performance at 500 nm
 - Nyquist sampled at 400 nm
 - NIR Imaging (~1.0 μm 2.5 μm)
 - $\circ~$ Diffraction-limited performance at 1.2 μm
 - $\circ~$ Nyquist sampled at 1.2 μm
- Each channel will contain a suite of spectral filters:
- Field-of-view: 2 x 3 arcmin
 - Channel Select Mechanism (CSM) allows:
 - Non-simultaneous observation over each channel's full band
 - Simultaneous observation in each channel over limited bandpasses or with limited throughputs

HDI Technical Overview (2/2)

• Exposure times:

- For most extragalactic sources and stellar population observations:
 - Total observation times of up to 200 hrs.
 - Composed of many exposures of 500-1000 s each
- High-speed photometry with 50 ms exposures
 - Limited to small tiles of the focal plane at a time (~150 x 150 pixels)

HDI Detector Concept – UV/Vis Channel

CMOS Detector

- Pixel size = 5 μm
- Nyquist sampled at 400 nm
 - Defined as: 1 pixel = λ / (2*D)
 - \circ λ = 400 nm; D = 15.08 m; \Diamond 1 pixel = 2.74 mas
- Read noise: ~2.5 e-
- Dark Current: Assume 0.001 e-/pix/s
- Operating temperature ~120 K

410 pixel gap

HDI Detector Concept – NIR Channel

- H4RG Detector
 - Pixel size = 10 μm
 - Nyquist sampled at 1200 nm
 - Defined as: 1 pixel = λ / (2*D)
 - \circ λ = 1200 nm; D = 15.08 m; ◊ 1 pixel = 8.2 mas
 - Read noise: < 5 e-
 - Dark Current: Assume 0.001 e-/pix/s
 - Operating temperature ~70 K

205 pixel gap

HDI Special Modes :

- High-Precision Astrometry (for measuring exoplanet mass)
 - Astrometric precision of $< 5 \times 10^{-4}$ pixels
 - Requires a Pixel Calibration System to calibrate pixel geometry
- Fine-guiding
 - HDI is the primary fine-guidance sensor for the LUVOIR observatory
 - Similar to WFIRST operation
 - Requires ability to define regions of focal plane with faster readout
 - Capability shared in both UV/Vis and NIR channels
- Image-based Wavefront Sensing (i.e. phase retrieval) for telescope commissioning and maintenance
 - Similar to role played by NIRCam on JWST
 - Elements included in UVIS channel filter wheel assembly:
 - Weak-lenses for generating defocused images
 - Dispersed Hartmann Sensor (DHS) gratings for coarse piston sensing
 - Pupil Imaging Lens (PIL) subsystem

HDI System Block Diagram

HDI Mechanical Volume in the BSF

42

HDI Thermal Design

Questions / Discussion