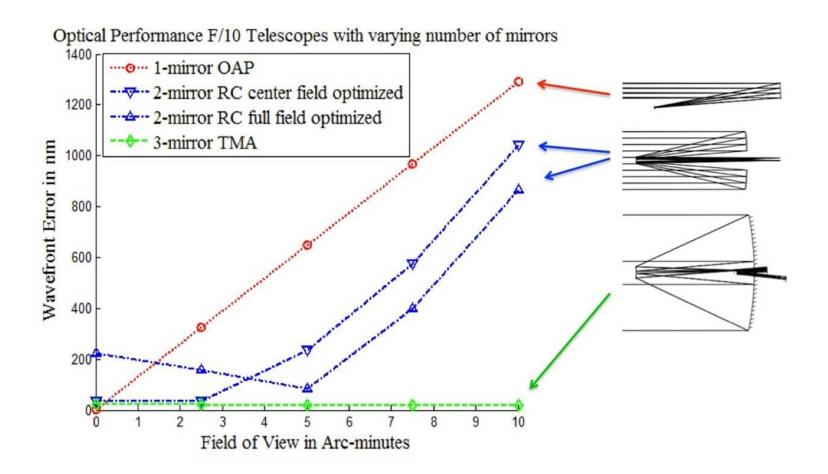
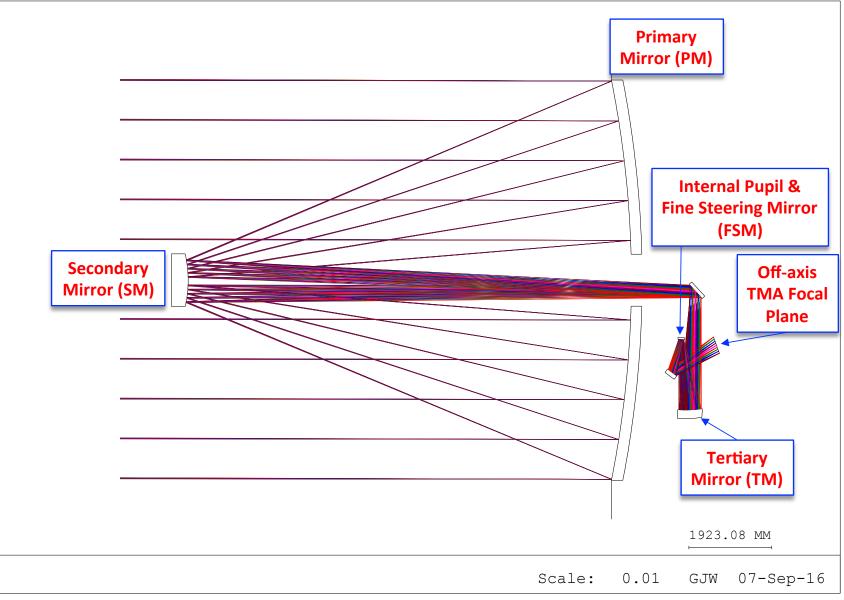
Technical Considerations for Telescope Architectures and Aperture Size

Matthew R. Bolcar, Lee Feinberg, Garrett West GSFC


> Presented to the LUVOIR STDT 11/9/16

Objectives


- Review a few *illustrative* telescope designs
 - Three-mirror anastigmat (TMA) vs. Ritchey-Chretien (RC)
 - Discuss strengths & weakness of each
- On-axis vs. off-axis designs
- Relate design considerations to LUVOIR priorities
 - Instrument accommodations
 - Packaging for launch vehicle
 - Test facility accommodations
 - Aperture scaling relationships

Basic Idea

More mirrors = Better image quality over wider field

Three-mirror Anastigmat - Single Focal Plane (TMA-SF)

TMA-SF Advantages

- Three mirrors simultaneously correct spherical, coma, and astigmatism aberrations
 - Enables diffraction-limited performance over very wide fields-of-view (> 8 x 8 arcmin)

- Access to an internal pupil allows for additional correction:
 - Pointing control with a fine-steering mirror (FSM)
 - Active control with a deformable mirror (DM)
- Heritage: JWST

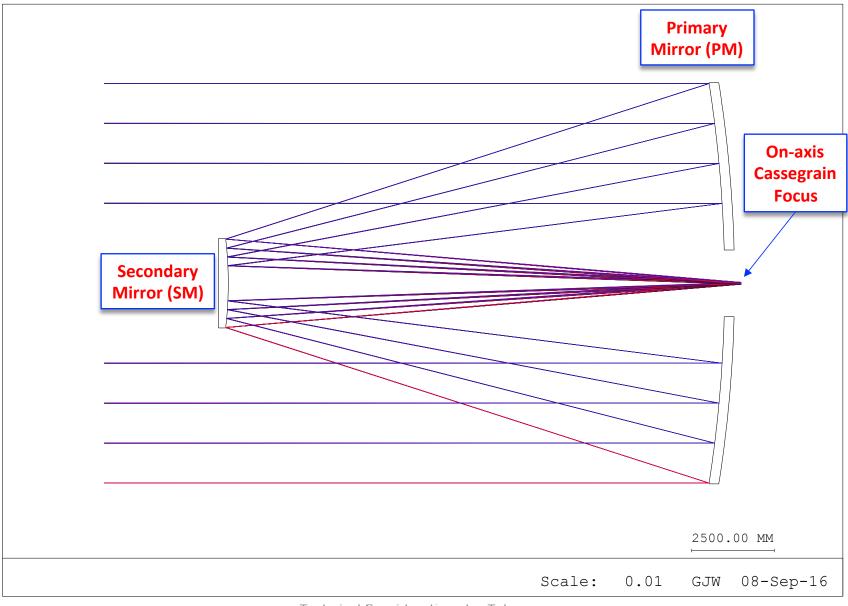
TMA-SF Disadvantages

- At least four reflections before entering instruments
 - More are likely in order to fold beam for packaging
 - Lower throughput for sensitive instruments (UV & coronagraph)

- Complex aft-optical system (AOS)
 - Complicates system alignment
 - Could present difficulty for instrument packaging behind telescope

• JWST experience indicates stray-light can be difficult to baffle

Three-mirror Anastigmat - Dual Focal Plane (TMA-DF)


TMA-DF Advantages

- Narrow FOV on-axis Cassegrain focus
 - Only 2 reflections for high-throughput (UV & coronagraph) instruments
- Wide FOV off-axis TMA focus
 - Well-corrected wide-FOV instruments
 - Silver coating on TM, FSM, etc. for optimized Vis/NIR performance
- Access to an internal pupil in TMA chain allows for additional aberration correction (but only in TMA focal plane):
 - Pointing control with a fine-steering mirror (FSM)
 - Fixed pupil plate corrector
 - Active control with a deformable mirror (DM)
- Heritage: WFIRST

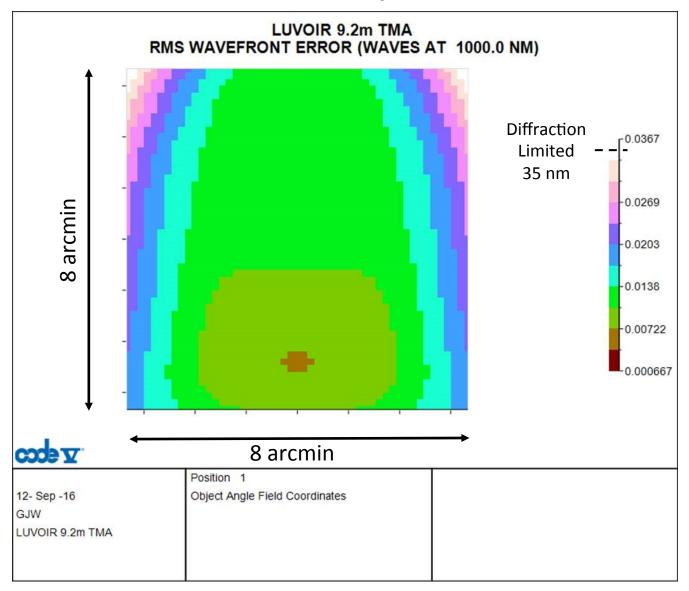
TMA-DF Disadvantages

- Must balance aberrations between both focal planes
 - Requires a pupil corrector plate to recover image quality at TMA focus
- More difficult packaging configuration since both focal planes need to be accessible
 - May require more fold mirrors, reducing throughput in the TMA focus
- The Cassegrain focus is *very* narrow field-of-view
 - Arcseconds instead of arcminutes

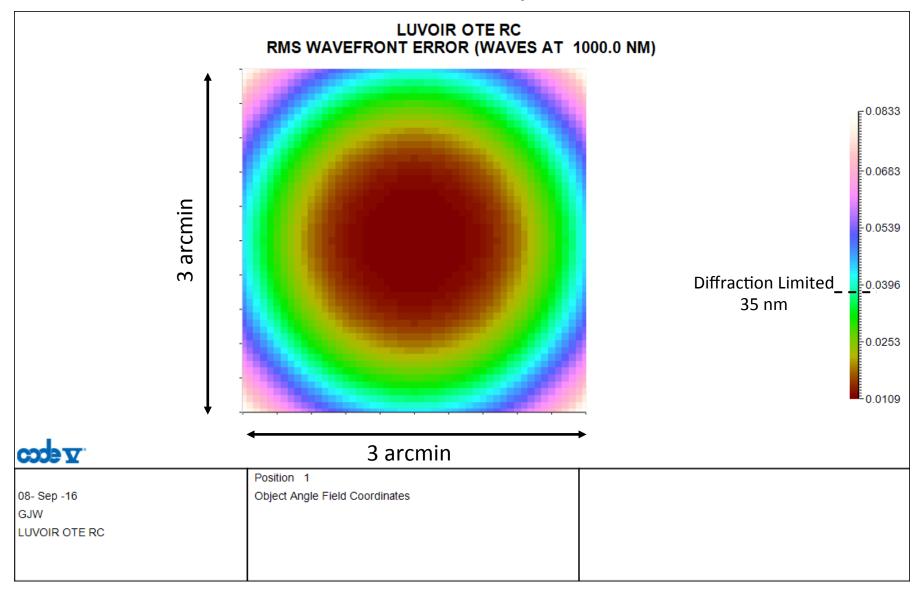
Ritchey-Chretien (RC)

RC Advantages

- Single, high-throughput focal plane
 - Possible for every instrument to only see two bounces (though some fold mirrors will likely be necessary)

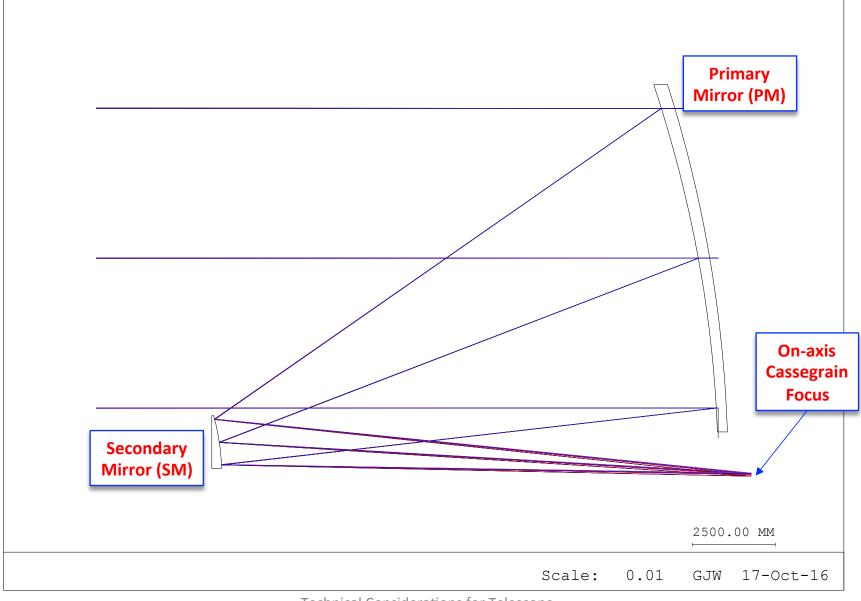

 Simplified optical train means less complicated alignment and testing

• Heritage: HST


RC Disadvantages

- Narrower overall field-of-view than TMA designs
 - ~3 x 3 arcmin diffraction-limited
 - Instruments outside of this field will need internal corrective optics
 - A curved focal plane can help improve the image quality, but may require some creativity in instrument packaging and design
- No access to internal pupil for a fine-steering mirror
 - Puts all pointing requirements on the spacecraft / disturbance isolation system
 - Or need to include individual fine-steering mirrors inside instruments that need it

Field-of-View Map: 9.2 m TMA


Field-of-View Map: 12 m RC

On-axis vs. Off-axis

- All of these designs were presented as nominally on-axis
- Any of them could be made to be unobscured off-axis
- Off-axis advantages:
 - No-obscuration improves overall throughput and possibly coronagraph ease-of-design / performance
- Off-axis disadvantages:
 - Higher angles-of-incidence at PM & SM → Larger polarization effects?
 - Generally increases aberration \rightarrow Smaller well-corrected FOV
 - PM-to-SM distance increases → Impacts stability & packaging
 - Unclear how an off-axis segmented design could be packaged to fit inside of a fairing

Off-Axis Ritchey-Chretien (RC)

Instrument Accommodations

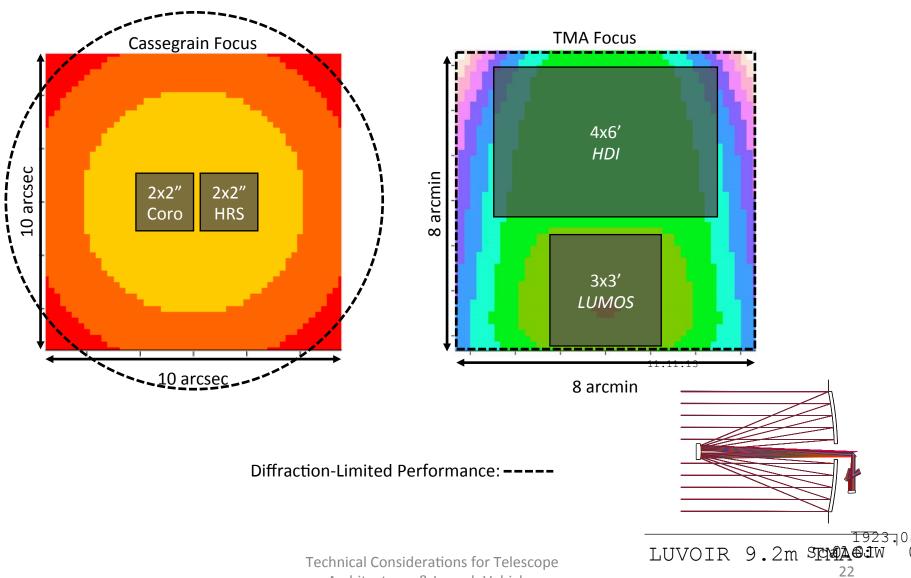
- Each of the LUVOIR instruments may have a preference for one or more of these designs
- The following slides address each instrument separately and discuss the trades associated with each of the telescope designs
- Once all of the instrument performance specifications are in hand, the engineering team will design the telescope to optimize performance over all of the instruments

Vis/ NIR Coronagraph

- Only requires a small FOV (~arcsecs)
 - Could go in any focal plane of any design
- Cassegrain focus of the TMA-DF, and RC design are attractive for:
 - High throughput due to reduced number of reflections
 - Better wavefront stability with fewer optics in the path
- TMA focus is attractive for:
 - Access to a fine-steering mirror for better pointing control

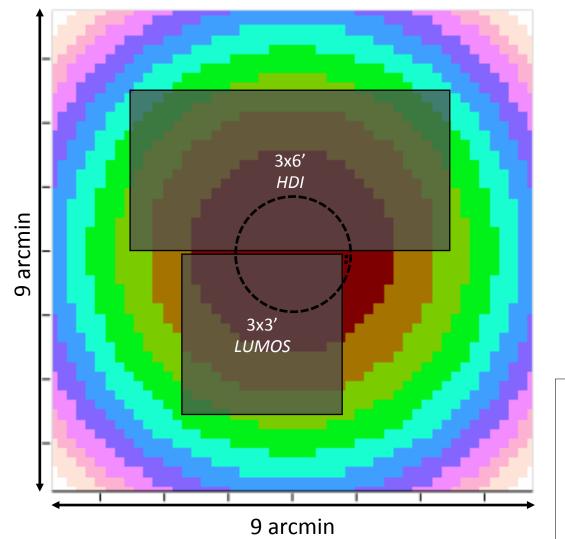
LUMOS (UV Multi-object Spectrograph)

- TMA-SF design is least desirable
 - Lots of reflections reduce throughput, BUT
 - Allows for wide FOV, with stable pointing behind a FSM
- TMA-DF Cassegrain focus
 - Improves throughput with only two reflections, BUT
 - Extremely limited FOV, pointing must be provided by spacecraft
- Ritchey-Chretien is best overall
 - High throughput with only two bounces
 - Achievable ~3x3 arcmin FOV
- Need to understand pointing stability requirements to determine if there is a need for a FSM

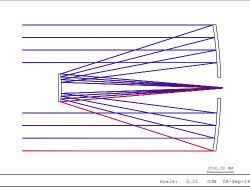

HDI – Vis / NIR Wide-field Imager

- Obviously wants to be at either of the TMA focal planes for wide field-of-view
- Would need internal corrective optics to work with the limited field-of-view of the Ritchey-Chretien
 - Needs additional study to determine what's achievable
- Need to understand pointing requirements of astrometry mode to determine if an FSM is necessary

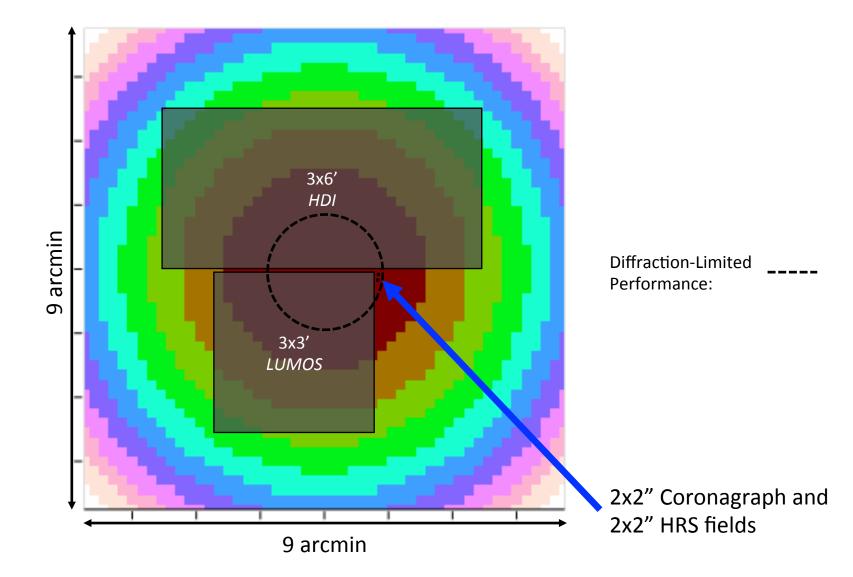
Vis / NIR Multi-resolution Spectrograph


- Narrow field-of-view?
 - Could go in any focal plane of any design
- Need to understand requirements for radial velocity measurements to understand requirements on telescope

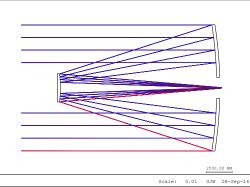
Example TMA-DF Focal Plane Layout

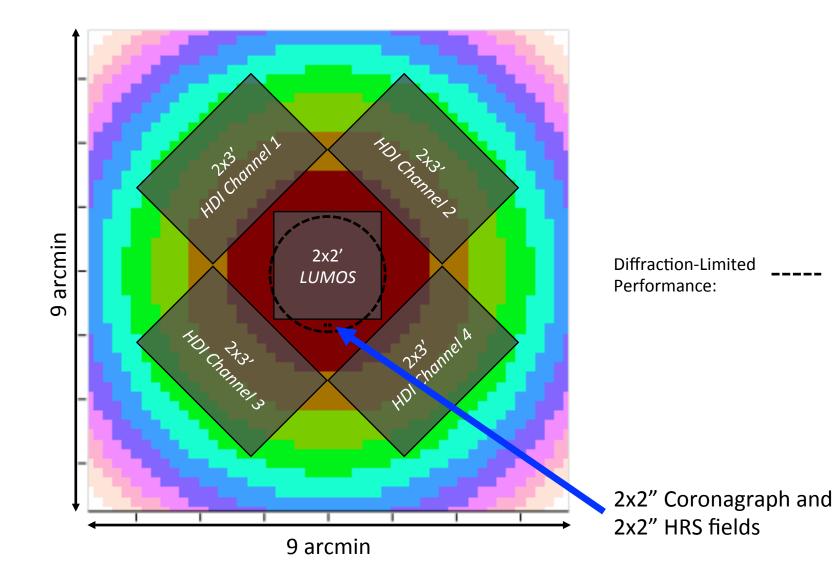


Architectures & Launch Vehicles


Example RC Focal Plane Layout (1)


Technical Considerations for Telescope Architectures & Launch Vehicles Diffraction-Limited Performance:


Example RC Focal Plane Layout (1)


Example RC Focal Plane Layout (2)

Technical Considerations for Telescope Architectures & Launch Vehicles Diffraction-Limited Performance:

Example RC Focal Plane Layout (2)

Summary Stoplight Chart

Capability:	TMA-SF	TMA-DF	RC
Presence of High-Throughput Channel			
Wide Field-of-View Capability			
Cassegrain Focus Field-of-View			
Alignment Complexity			
Instrument Packaging Complexity			
Availability of Fine-Steering Mirror			
Angle-of-Incidence Impact on Polarization			

Summary Stoplight Chart

Capability:	TMA-SF	TMA-DF	RC
Presence of High-Throughput Channel			
Wide Field-of-View Capability			
Cassegrain Focus Field-of-View			
Alignment Complexity			
Instrument Packaging Complexity			
Availability of Fine-Steering Mirror			
Angle-of-Incidence Impact on Polarization			
Optical / NIR Coronagraph			
LUMOS			
HDI			
Optical / NIR Spectrograph			

LUVOIR Launch Vehicle Accommodations

- Assume LUVOIR will initially accommodate four or more instruments
- Concepts that use an SLS with 8.4-m or 10-m diameter fairings are consistent with this assumption
 - SLS concepts will be constrained by cost before mass to orbit or fairing volume constrains the number of instruments
 - Other launch vehicles (Space X, Blue Origin) worth keeping an eye on
- Concepts that use a launch vehicle with a 5 m dia. fairing (like Delta IV Heavy) are more challenging
 - Instrument studies can probe for risks and methods of mitigation

LUVOIR Launch Vehicle Accommodation

Telescope Aperture Di	iameter (m):	6.5	9.2	12	16	20
Launch Vehicle:						
SLS Block 2B 50 k kg to L2 orbit 10 m fairing	Mass Margin M Volume Margin V	0		0	•	0
SLS Block 1B						
38 k kg to L2 orbit 8.4 m fairing	M V	0		•		•
Delta IV Heavy						
10 k kg to L2 orbit 5 m fairing	M V	0	•	0	•	•
Feas	sible 🔵 Not	Feasible	e 🔴 Need	s Validation	\bigcirc	
	Technical (onsiderati	ions for Telescone			

LUVOIR Launch Vehicle Accommodation

Telescope Aperture Diameter (m):		6.5	9.2	12	16	20	
Launch Vehicle:							
SLS Block 2B 50 k kg to L2 orbit 10 m fairing	Mass Margi Volume Margi		0	0	0	0	•
SLS Block 1B 38 k kg to L2 orbit 8.4 m fairing		M V	0	•	•	0	
Delta IV Heavy 10 k kg to L2 orbit 5 m fairing		M V	0	•	0	•	•
Fea	sible 🔵	Not F	easible 🔵	Nee	eds Validati	To achieve no stiffness rec thick backpla consumes v	quires a ane that

LUVOIR Test Facility (JSC) Accommodation

- LN₂ is likely required for thermal balance tests
 - Helium shroud not needed
- Assuming a room temperature telescope:
 - Some tests performed in vacuum with autocollimating flats
 - Some tests, like center of curvature conducted in ambient environment in a cleanroom
 - Both tests leverage JWST experience
- Secondary Mirror will likely need to be deployed or installed inside the chamber
- Need ~2-meter clearance around edge for access, cables, etc.
- Demonstrate thermal stability with subscale testing (e.g. single wing of mirrors)
- Dynamics demonstrated in cleanroom and through model validations

LUVOIR Test Facility (JSC) Accommodation

Telescope Aperture	e Diameter (m):	6.5	9.2	12	16	20
Facility Sizes:						
Vacuum Vessel Diameter (19 m) Height (36 m)	Diameter Margin D Height Margin H	0	•	•	•	•
LN ₂ Shroud Diameter (16 m)	D H	0		•		•
Height (28 m)		C	C	C	C	C
Helium Shroud Diameter (13 m) Height (20 m)	D H	•			•	•
	Feasible 🔵 Not	Feasible	Need	s Validation	0	
	Technical (Consideration	ns for Telescope			

Additional Aperture-driven Values*:

D (meters)	Area (m²)	Number of Segments	Heater Power (W)	Mirror Mass (kg)	Backplane Mass (kg)	Backplane Thickness (m)	Total PM Mass (kg)
6.5	33.2	18	627	829	1327	0.33	2156
9.2	66.4	36	1257	1661	2658	0.66	4319
12	113.0	61	2139	2826	4522	1.12	7348
16	201.0	109	5024	5024	8038	1.98	13062

*Back of the envelope calculations. Assumes 293 K operating temperature and slightlybetter-than-JWST areal density.

Remaining Telescope Architecture Decisions:

Aperture size(s)

Your vote today!

Observatory temperature Red cutoff vs. acceptable cost and risk

Telescope optical design

Instrument FOVs Instrument pointing requirements Instrument image quality requirements

On- vs. Off-axis

Outcome of polarization studies Investigating deployment/packaging options Impact on exoplanet yield