*Clever name suggestions appreciated!

Optical/Near-Infrared multi-Resolution Spectrograph*

Courtney Dressing Caltech on behalf of the ONIRS Instrument Team

November 9, 2016

LUVOIR STDT F2F3

New Haven, CT

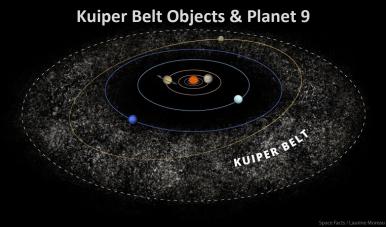
O/NIRS Science Team

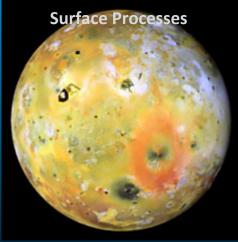
Courtney Dressing (Caltech) Jayne Birkby (CfA) Matteo Brogi (Colorado) Daniela Calzetti (U Mass Amherst) Shawn Domagal-Goldman (GSFC) Ravi Kopparapu (GSFC) Laura Kriedberg (CfA) Caroline Morley (CfA) John O'Meara (St. Michael's) Geronimo Villanueva (GSFC) Ji Wang (Caltech)

YOU? (especially Cosmic Origins + Solar System people)

O/NIRS Cosmic Origins Science

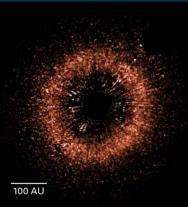
O/NIRS Cosmic Origins Science

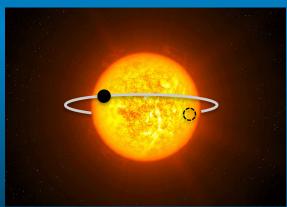

O/NIRS Solar System Science


O/NIRS Solar System Science

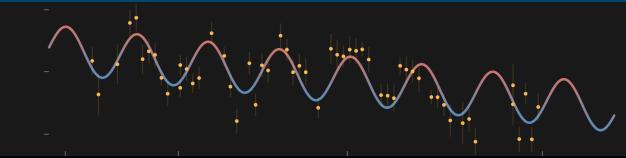


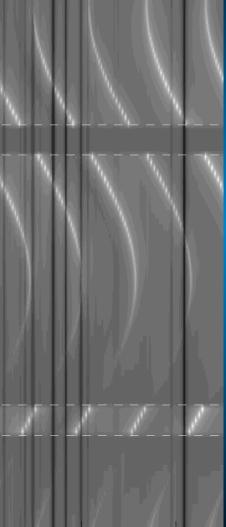
Thick Atmospheres

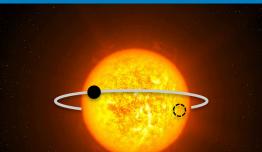




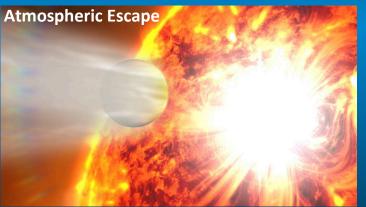
O/NIRS Exoplanet Science





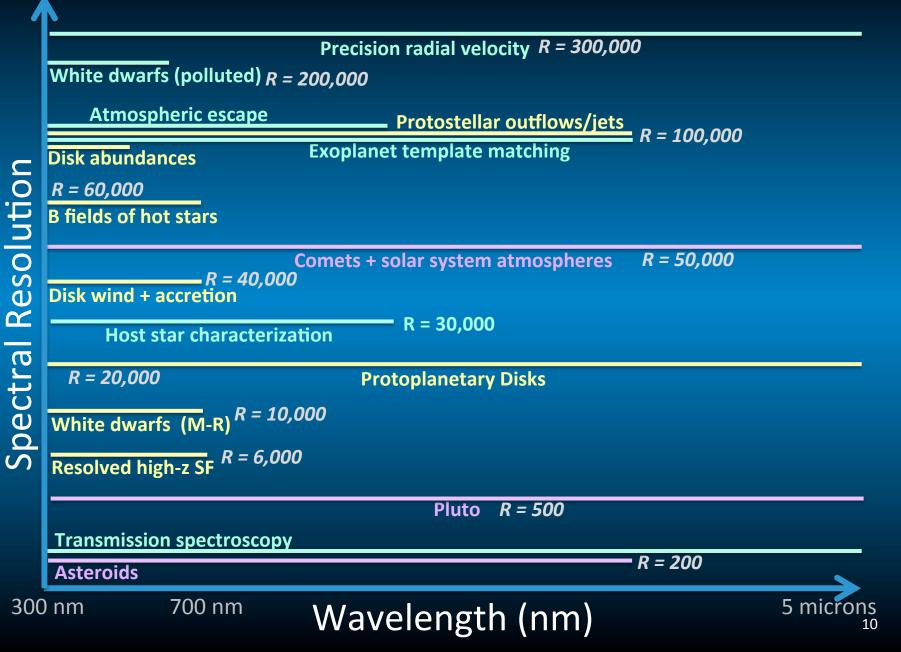


O/NIRS Exoplanet Science



Atmospheric Composition (via transmission + emission spectra)

Mass Measurement



Atmospheric Composition

Desired Spectral Resolution Range

- Low:
 - Exoplanet transmission spectra (R = 200)
 - Pluto surface characterization (R = 500)
- Medium:
 - White dwarf mass/radius relation (R = 10,000)
 - Protoplanetary & debris disks (R = 20,000 30,000)
 - Host star characterization (R = 30,000)
- High:
 - Expansion of the universe (R = 100,000)
 - Template matching (R = 100,000)
 - Radial velocity mass measurements (R = 300,000)

Mapping Science Cases to Instrument Parameters

Desired Fields of View for Spatially Resolved Observations

- Small:
 - 20" (gas in debris disks)
 - 30" (protostellar outflows/jets
- Medium
 - 2' x 2' (disk wind & mass accretion)
 - 1' 2' (SF & IMF)
- Large

- 2' - 5' (comets; but IFU over smaller area = OK)
- 10' (high-redshift galaxies)

Desired Spatial Resolution

• High

- 0.008" (solar system atmospheres)
- 0.01" (disk wind + mass accretion; protostellar outflows/jets)
- Low Medium
 - 0.1" (high-redshift galaxies)
 - 0.7" 7" (protoplanetary disks)

- Coupled to coronagraph:
 - Exoplanet atmospheres via template matching
 - Black hole mass measurements (contrast required?)
- Coupled to polarimeter:
 - Magnetic fields of hot stars
- Exquisite wavelength calibration + stability:
 - High-precision radial velocity
 - Expansion of the universe

Coupled to coronagraph:

Testing in "small" architecture

- Exoplanet atmospheres via template matching
- Black hole mass measurements (contrast required?)
- Coupled to polarimeter:
 - Magnetic fields of hot stars
- Exquisite wavelength calibration + stability:
 - High-precision radial velocity
 - Expansion of the universe

Coupled to coronagraph:

Testing in "small" architecture

- Exoplanet atmospheres via template matching
- Black hole mass measurements (contrast required?)
- Coupled to polarimeter:
 Magnetic fields of hot stars
- Exquisite wavelength calibration + stability:
 - High-precision radial velocity
 - Expansion of the universe

Coupled to coronagraph:

Testing in "small" architecture

- Exoplanet atmospheres via template matching
- Black hole mass measurements (contrast required?)
- Coupled to polarimeter:
 Magnetic fields of hot stars

Exquisite wavelength calibration + stability:
 High-precision radial velocity
 Peter Plavchan's
 Expansion of the universe

Initial Instrument Parameters

Wavelength range:

- Blue limit: 300 nm (at least as blue as LUMOS cutoff)
- Red limit: 5 microns (as red as possible)
- Simultaneous coverage of broad bandpass

Spectral Resolution:

- Low: R = 100 500
- Medium: R = 5,000 50,000
- High: R = 100,000 300,000
- Spatial Resolution: 0.01"
- Field of view: 2' x 2' ???
- IFU + fixed slits

Questions for the LUVOIR STDT

- Are there other science cases requiring lower or higher resolution?
- How wide of a field of view do you need?
- What would you like to do with O/NIRS that you cannot do with other instruments?

O/NIRS Current Accomplishments

- Established science case for template matching (Thanks to Matteo Brogi, Jayne Birkby, & Ji Wang!)
- Merged multiple science cases into a coherent "wish list" of instrument parameters
- Consulted community precision radial velocity experts for perspectives on instrument design

O/NIRS Ongoing Work

- Recruiting more COR & Solar System members
- Reviewing designs for other near-infrared spectrographs & assessing lessons learned
- Running simulations to determine impact of design choices on instrument performance
 - Geronimo Villanueva's online instrument simulator
 - Chas Beichman's precision radial velocity code
- Brainstorming better instrument names

Summary: multi-resolution Optical/Near InfraRed Spectrograph

- Flexible instrument enabling a wide range of LUVOIR science (COR, EXO, & Solar System)
 - Broad wavelength coverage: 300 nm 5 microns
 - Variable resolution: R = 100 300,000
 - IFU and slit spectroscopy capabilities
- Technology Needs
 - Large IFU with broad wavelength coverage (fiber bundles?)
 - High-efficiency, low read-noise detectors
 - Space-based laser comb (for high-precision radial velocity)

ADDITIONAL SLIDES

Requirements for Template Matching (from science case written by Brogi & Birkby)

HDS+HDI requirement table

Observation	Major	Substantial	Incremental
Requirement	Progress	Progress	Progress
Wavelengths	0.3-2.4 µm	0.3-2.0 µm	0.7-1.5 µm
Spatial resolution	lambda/D	2lambda/D	3lambda/D
Spectral resolution	R=100,000+	R=50,000	R=50,000
Field-of-view	Enough for HZ	Enough for HZ	Enough for HZ
	of alpha Cen and	of alpha Cen	of closest early
	Jupiter analog at		K-dwarfs / late
	10 pc		G-dwarfs
Contrast	1e-7 HCI	1e-6 HCI	1e-5 HCI
	1e-6 HDS	1e-5 HDS	1e-5 HDS
Telescope aperture	16m	12m	8m
HCI-HDS coupling	Full IFU	Configurable IFU	Fiber on planet
Exposure time	N/A	N/A	N/A

Science Goals: Cosmic Origins

- Expansion of the universe
- Black Holes (dynamical masses)
- High-redshift galaxies (chemical evolution)
- First Quasars (inflows/outflows between galaxies & circumgalactic medium)
- Supernovae (progenitors, formation sites, very early/late observations)
- Star formation & the initial mass function
- Magnetic fields of hot stars
- White dwarfs (mass/radius relation)
- Protoplanetary disks (abundances, winds, & mass accretion)
- Protostellar outflows/jets

Science Goals: Solar System

- Geology & Surface Processes
- Comets
- Thick Solar System Atmospheres
- Asteroids

Science Goals: Exoplanets

- Host star characterization
- Polluted white dwarfs
- Debris disks (map gas & determine composition)
- Exoplanet atmospheric composition (via transmission + emission spectra)
- Exoplanet atmospheric escape (via transmission spectra)
- Exoplanet atmospheric composition (via template matching)
- Exoplanet mass measurements (via precision radial velocity)