LUVOIR Ultraviolet Multi-object Spectrograph (LUMOS)

KEVIN FRANCE UNIVERSITY OF COLORADO FOR LUMOS SCIENCE WORKING GROUP LUVOIR STDT F2F3 – 09 NOVEMBER 2016

LUMOS SCIENCE TEAM

KEVIN FRANCE - COLORADO JOHN O'MEARA - ST. MICHAEL'S JANE RIGBY - GSFC DAVID SCHIMINOVICH - COLUMBIA Walt Harris – Arizona LEONIDAS MOUSTAKAS - JPL JASON TUMLINSON - STSCI BRIAN FLEMING - COLORADO STEVE MCCANDLISS - JHU

1. LUMOS OVERVIEW

Multi-channel instrument:

- 1) High-resolution (echelle) point source spectrograph
- 2) Multi-object imaging spectrograph, medium- and low-resolution spectral modes.
- 3) Near-UV IFU and NUV+FUV maging mode (under discussion)

2. LUMOS Instrument Requirements^{10mos}

<u>Spectral Bandpass</u>: Target: 100 – 400 nm (Stretch: 90 – 400 nm)

Spectral Resolving Power: Target: "H" = 120,000 "M" = 15,000 – 50,000 "L" = 5,000 – 15,000 "LL" ~ 500 (Stretch: H -> 250,000)

Temporal Resolution:

Target: 1 msec (Stretch: 0.1 msec)

2. LUMOS Instrument Requirements lumos

<u>Multi-Object Field-of-View</u>: Target: 2' x 2' (Stretch: 3' x 3')

Angular Resolution in MOS mod Target: 50 mas (Stretch: 30 mas)

Heritage/TRL: Design, technology, ConOps based on HST UV spectrographs, FUSE, and suborbital instrument designs and component level testing; <u>NASA APRA and SAT programs</u> (e.g., J. Vallerga, O. Siegmund, K. France, S. McCandliss, B. Fleming, S. Nikzad, M. Quijada, and others)

2b. LUMOS Technology – Current Lumos Laboratory and Flight Testing

LUMOS Technology Development: Current Laboratory/Flight Programs

- 1) <u>CHESS</u> (CU): high dynamic-range MCPs (X-strip) echelle gratings, deformable mirror holographic recording
- 2) FORTIS (JHU): prototype MSAs
- 3) <u>DEUCE</u> (CU): large format photon-counting detectors (200mm x 200mm)
- 4) <u>SISTINE</u> (CU): Advanced UV coatings, large format high resolution MCPs, high angular and spectral res UV spectrograph design

Optical Telescope Assembly → collimator
Echelle grating (mechanical: Richardson, e-beam: McEntaffer/PSU)
Holographically ruled cross-dispersing/focusing grating

<u>**NEED</u></u>: stable advanced coatings (reflectivity \ge 85% at \lambda > 1000 Å, large-format detector array (~200mm x 200mm)</u>**

nos

-Vallerga et al. 2016

mos

3. LUMOS – Exposure Time Calculator (Jason Tumlinson)

🗎 🖨 🗱 🛿 229th Meeting of the Amer... 🗴 🕝 HL Tau ALMA image beam... 🗴

Author Query Results × B

■ Bokeh Application × +

C 🔍 HL Tau ALMA image beam size

mos

÷

(i) www.jt-astro.science/luvoir_simtools/spec_etc.html

🚈 Most Visited 殷 HST Program Status 🚯 Travel Forms 🍁 International Astrono... 🕻 CU_ExoAstro-ph 🛞 LUVOIR Events 📥 LUVOIR_STDT

LUMOS: LUVOIR Multi-Object Spectrograph

Back to Main Page

3. LUMOS – Notional Design Comparison with HST-STIS

umos

Instrument Parameter	STIS G140M	LUMOS FUV (Imaging Modes)
Spectral Resolving Power	10,000	8,000 – 50,000 (NUV: 20k – 40k)
Total Spectral Bandpass	1140 – 1740 Å	1000 – 2000 Å (NUV: 2000 – 4000 Å)
Spectral Bandpass per Exposure	50 Å	450 – 1000 Å (NUV: 1600 Å)
Number of Exposures to Cover Spectral Bandpass	12	1 (Low Res) 3 (Med Res) (NUV: 1 – 2)
Imaging Field- of-View	0.2" x 28"	~80" x 140" (OTA-dependent)
Spectrograph Throughput	1.2%	10.5%

4. LUMOS Concept of Operations

What can we do with LUVOIR + LUMOS?

Deep fields will be produced automatic via parallel observations during coronagraphy

Spectroscopic observations of low/intermediate redshift galaxies and CGM/IGM

What can we do with LUVOIR + LUMOS?

Spectroscopic observations of low/intermediate redshift galaxies and CGM/IGM

What can we do with LUVOIR + LUMOS?

3 x 2 microshutter arrays, 100 x 200 micron slits

< 0.05" spectral imaging across most of FOV • (0.03" – 1.0" spectral imaging across full FOV)

What can we do with LUVOIR + LUMOS?

What can we do with LUVOIR + LUMOS?

 $R > 8,000 \ 1000 - 2000 \ \text{\AA}$ spectroscopy of hundreds of objects simultaneously.

Background quasars, numerous galactic regions, circumgalactic halo

What can we do with LUVOIR + LUMOS?

Protoplanetary Disks – where COR and EXO meet

'End product' of CGM/galaxy connection. Composition of planet forming region, connection to eventual bulk composition of exoplanets and their atmospheres.

What can we do with LUVOIR + LUMOS?

High sensitivity + high-resolution far-UV absorption line spectroscopy of CO, H_2 , and H_2O enable quantitative compositional analysis of planetforming disks

Photoevaporative wind

 Distribution of inclination angle and ages allows 4-D mapping of disks [r,h,t (age),λ (composition)]

SUMMARY

LUMOS: UV SPECTROGRAPH CONCPT FOR LUVOIR

1) HIGH-RESOLUTION (ECHELLE) POINT SOURCE SPECTROGRAPH, $[R \ge 10^5]$

2) IMAGING / MULTI-OBJECT SPECTROGRAPH OVER 'A FEW' SQUARE ARCMINUTES FOV $(2-3)^2$ AT LOW AND MEDIUM RES [R = 500 - 50,000]

3) DEVELOPMENT AND FLIGHT-TESTING HAPPENING TODAY TO SUPPORT LUVOIR-LIKE MISSION IN THE NEXT DECADE

2b. LUMOS Technology – Current Laboratory and Flight Testing

Colorado UV Rocket Program

 High-resolution spectroscopy of the local ISM (<u>CHESS</u>); Imaging Spectroscopy of Nearby Galaxies and Exoplanet Host Stars (<u>SISTINE</u>)

Hardware Development:
 1. UV/visible optical coatings
 2. UV Detectors
 3. Diffraction Grating Technology

PI – K. France

CHESS Payload

JMOS

CHESS Payload

Cross Disperser (HORIBA Jobin-Yvon):

100 x 100 x 30 mm fused silica substrate Holographically-ruled, 351 grooves/mm

5. LUMOS Technology – Current Laboratory and Flight Testing

CHISL Technology Development

1) CHESS: (see Keri Hoadley's poster today/tomorrow, 9905-138)

2) SISTINE: (see Brian Fleming's Talk this afternoon, 9905-9). $R \approx 10,000$, sub-arcsecond imaging spectrograph, 1000 – 1600 Å

1. LUVOIR ORIGIN \rightarrow SCIENCE

IUMOS

6.4 SCIENCE SUMMARY

	FormativeEra					Visionary Era			
	GW Surveyor	CMB-pol Surveyor	FIR Surveyor	LUVOIR Surveyor	X-ray Surveyor	GW Mapper	Cosmic Dawn Mapper	ExoEarth Mapper	Black Hole Mapper
Demographics of planetary systems									
Characterizing other worlds				2					
Our nearest neighbors and the search for life				3					
The origins of stars and planets				4					
The Milky Way and its neighbors				5					
The history of galaxies				6					
The origin and fate of the universe									
Extremes of matter and energy									
Ripples of space-time									

Primary Goals

Secondary Goals

Earth-mass Planets around M and K dwarfs: The Production of (and "Biomarl 40 Intrinsic Lya CHESS Sim.

Artist's View of Extrasolar Planet HD 209458b NASA, ESA, and G. Bacon (STScI) • STScI-PRC10-21

transmission spectroscopy the best technique for observations of atmospheric mass-loss outside the solar system. Currently limited by data quality.

