
LUVOIR instrument decision process

At 2nd STDT meeting (Aug 2016), instrument suite chosen on basis of science observation needs

Observational challenge

Faint planets next to bright stars

Solution

Optical / Near-IR Coronagraph

Contrast < 10⁻¹⁰ to observe exoEarths


Low resolution spectroscopy (R > 150)

Baseline bandpass: 0.4 µm to 1.8 µm

Ambitious bandpass: 0.2 µm to 2.4 µm

No space-based analog

Vector vortex coronagraph (Credit: D. Mawet)

Observational challenge

No UV through Earth's atmosphere

Solution

LUMOS

Far-UV to near-UV spectroscopy High resolution (R $\sim 10^5$) spectroscopy Med. res. multi-object spectroscopy Near-UV imaging Major upgrade of HST STIS

HST STIS UV instrument

Observational challenge

Imaging wide fields at high resolution

Solution

High-Definition Imager

4 – 6 arcmin field-of-view

Optical to near-IR bandpass

Possibly high precision astrometry to measure planet masses

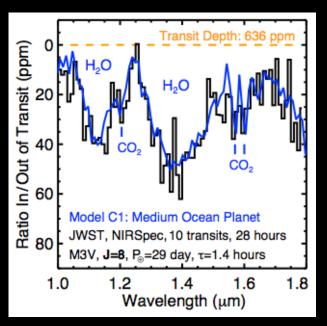
Major upgrade of HST WFC3

HST Wide Field Camera 3

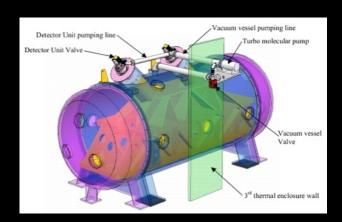
Observational challenge

Measuring warm molecules present in Earth's atmosphere

Solution


Optical / Near-IR Spectrograph

Multiple resolutions up to R ~ 10⁵


High photometric precision for transits

Possibly high precision RV to measure planet masses

No space-based analog

Credit: Natasha Batalha

ESPRESSO spectrograph for VLT (Credit: ESO)

LUVOIR online simulation tools in development

http://jt-astro.science/luvoir.html

LUVOIR Performance Simulation

LUVOIR: The Large UltraViolet Optical Infrared Surveyor

Performance Simulation

This page links to performance simulations and visualizations for the LUVOIR mission, NASA's future concept observatory for UVOIR astronomy.

All these widgets are experimental. If they are not working email tumlinson AT stsci.

HDI Photometric ETC

This is the basic ETC for photometry in multiband images.

LUMOS Spectroscopic ETC

This is a very simple ETC for UV spectroscopy with LUVOIR.

Galaxy Imaging Resolution

A comparison of resolutions for a z = 2 galaxy.

UV MOS and Stellar Clusters

See the impact of UV MOS on the study of stellar clusters and their feedback.

ExoEarth Atmospheres

Play around with atmosphere spectra for exoEarths of different surface composition.

Coronagraphic Spectra of ExoEarths

Model observations of Earth-like planets with realistic noise.

Exoplanet Yield Tool

A widget for visualizing the Stark et al. ExoEarth yields.

Learn More about LUVOIR

Difference between LUVOIR and HabEx?

Both LUVOIR and HabEx have two primary science goals

- Habitable exoplanets & biosignatures
- Broad range of general astrophysics

The two architectures will be driven by difference in focus

- For LUVOIR, both goals are on equal footing. LUVOIR will be a general purpose "great observatory", a successor to HST and JWST in the ~ 8 – 16 m class
- HabEx will be optimized for exoplanet imaging, but also enable a range of general astrophysics. It is a more focused mission in the ~ 4 – 8 m class

Similar exoplanet goals, differing in quantitative levels of ambition

- HabEx will explore the nearest stars to "search for" signs of habitability & biosignatures via direct detection of reflected light
- LUVOIR will survey more stars to "constrain the frequency" of habitability & biosignatures and produce a statistically meaningful sample of exoEarths

The two studies will provide a continuum of options for a range of futures