Twenty years from now you will be more disappointed by the things that you didn't do than by the ones you did do. So throw off the bowlines. Sail away from the safe harbor. Catch the trade wind in your sails. Explore. Dream. Discover.

-H. JACKSON BROWN

COSMIC ORIGINS SCIENCE WITH LUVOIR

DR. STRANGELUVOR OW LEARNED STOP WORRYING AND

STDT members who submitted quicksheets or more

- STDT members who submitted quicksheets or more
- SWG sub-group community members who answered the call

- STDT members who submitted quicksheets or more
- SWG sub-group community members who answered the call
- International contributions

NO MATTER WHAT YOU COME UP WITH, LYMAN SPITZER ALREADY THOUGHT OF IT

HISTORICAL POINT #1

HISTORICAL POINT #1

NO MATTER WHAT YOU COME UP WITH, LYMAN SPITZER ALREADY THOUGHT OF IT

III. Astronomical Research with a Large Reflecting Telescope

The ultimate objective in the instrumentation of an astronomical satellite would be the provision of a large reflecting telescope, equipped with the various measuring devices necessary for different phases of astronomical research. Telescopes on earth have already reached the limit imposed by the irregular fluctuations in atmospheric refraction, giving rise to "bad seeing". It is doubtful whether a telescope larger than 200 inches would offer any appreciable advantage over the 200 inch instrument. Moreover, problems of flexure become very serious in mounting so large an instrument. Both of these limitations disappear in a satellite observatory, and the only limitations on size seem to be the practical ones associated with sending the equipment aloft.

While a large reflecting satellite telescope (possibly 200 to 600 inches in diameter) is some years in the future, it is of interest to explore the possibilities of such an instrument. It would in the first place always have the same resolving power, undisturbed by the terrestrial atmosphere. If the figuring of the mirror could be sufficiently accurate, its resolving power would be enormous, and would make it possible to separate two objects only .01" of arc apart (for a mirror 450 inches in diameter); an object on Mars a mile in radius could be clearly recorded at closest opposition while on the moon an object 50 feet across could be detected with visible radiation. This is at least ten times better than the typical performance of the best terrestrial telescopes. Moreover, in ultra-violet light the theoretical resolving power would be distinguished on the moon

HISTORICAL POINT #1

NO MATTER WHAT YOU COME UP WITH, LYMAN SPITZER ALREADY THOUGHT OF IT

III. Astronomical Research with a Large Reflecting Telescope

The ultimate objective in the instrumentation of an astronomical satellite would be the provision of a large reflecting telescope, equipped with the various measuring devices necessary for different phases of astronomical research. Telescopes on earth have already reached the limit imposed by the irregular fluctuations in atmospheric refraction, giving rise to "bad seeing". It is doubtful whether a telescope larger than 200 inches would offer any appreciable advantage over the 200 inch instrument. Moreover, problems of flexure become very serious in mounting so large an instrument. Both of these limitations disappear in a satellite observatory, and the only limitations on size seem to be the practical ones associated with sending the equipment aloft.

While a large reflecting satellite telescope (possibly 200 to 600 inches in diameter) is some years in the future, it is of interest to explore the possibilities of such an instrument. It would in the first place always have the same resolving power, undisturbed by the terrestrial atmosphere. If the figuring of the mirror could be sufficiently accurate, its resolving power would be enormous, and would make it possible to separate two objects only .01" of arc apart (for a mirror 450 inches in diameter); an object on Mars a mile in radius could be clearly recorded at closest opposition while on the moon an object 50 feet across could be detected with visible radiation. This is at least ten times better than the typical performance of the best terrestrial telescopes. Moreover, in ultra-violet light the theoretical resolving power would be distinguished on the moon

COSMIC ORIGINS

TABLE OF CONTENTS

Ex	ecutive Summary	1
Pr	eface	5
1	Enduring Quests	7
2	Are We Alone?	13
	2.1 The Exoplanet Zoo	14
	2.2 What Are Exoplanets Like?	19
	2.3 The Search for Life	22
	2.4 Activities by Era	29
3	How Did We Get Here?	33
	3.1 Stellar Life Cycles and the Evolution of the Elements	33
	3.2 The Archaeology of the Milky Way and Its Neighbors	38
	3.3 The History of Galaxies	43
	3.4 Activities by Era	53
4	How Does Our Universe Work?	57
	4.1 The Origin and Fate of the Universe	57
	4.2 Revealing the Extremes of Nature	63
	4.3 Listening to the Cosmos	71
	4.4 Activities by Era	73
		,0

NASA 2013 Roadmap

COSMIC ORIGINS

TABLE OF CONTENTS

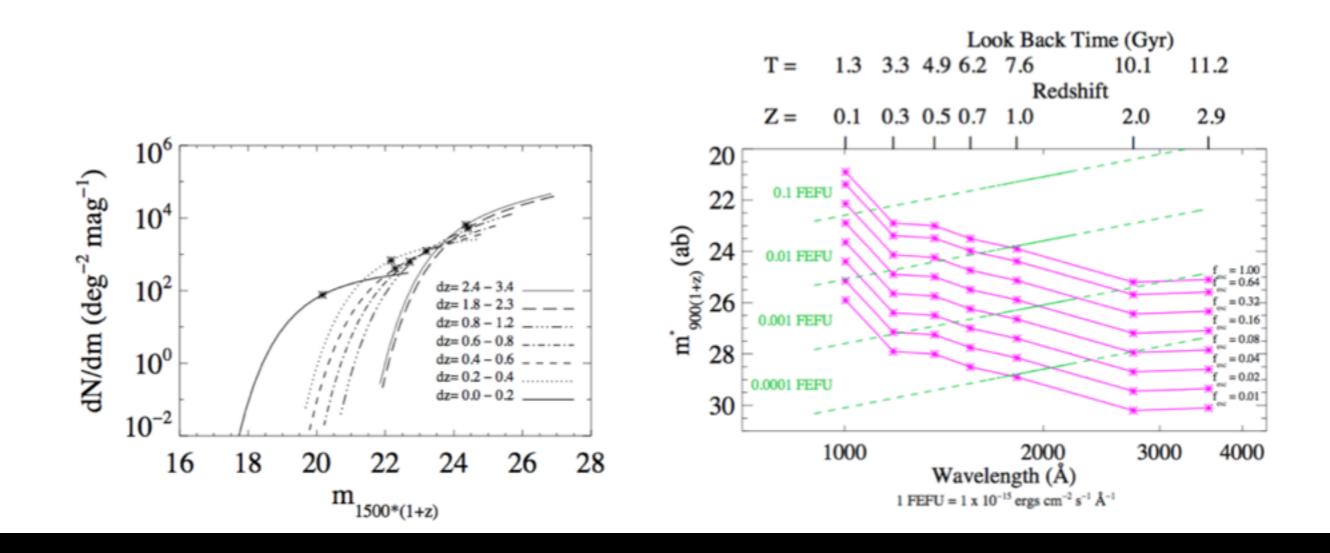
Ex	cecutive Summary	1
Pr	reface	5
1	Enduring Quests	7
2	Are We Alone?	13
	 2.1 The Exoplanet Zoo 2.2 What Are Exoplanets Like? 2.3 The Search for Life 2.4 Activities by Era 	14 19 22 29
3	 How Did We Get Here? 3.1 Stellar Life Cycles and the Evolution of the Elements 3.2 The Archaeology of the Milky Way and Its Neighbors 3.3 The History of Galaxies 	33 33 38 43
4	3.4 Activities by Era How Does Our Universe Work?	53 57
	 4.1 The Origin and Fate of the Universe 4.2 Revealing the Extremes of Nature 4.3 Listening to the Cosmos 4.4 Activities by Era 	57 63 71 73

NASA 2013 Roadmap

COR SWG Subgroup	Science Driver	STDT or Community (*) Lead						
			UV IM	UV Spec	O IM	O Spec	IR Im	IR Spec
	DM Distributions from stellar motions	Tumlinson via HDST report			2		2	
	DM: Strong lensing	???, Oguri*	2		2		2	
tter	DM: Dwarf Galaxy Cores	Tumlinson (via HDST report)			2		2	
Ma	Galaxy LF evolution	Finkelstein*, Shiminovich	2		2			2
Large Scale Structure, and Dark Matter	Lyman Continuum escape	Calzetti (for dwarfs), Finkelstein*, Teplitz	2	2	2	2		
ıre, ar	Distance ladder foundations	Scowcroft*			2	2	2	2
itructu	The FUV and EUV background	O'Meara, McCandliss*, Shiminovich	2	2				
0 m	Supernovae	Graham*	N			S		S
e Scal	IGM: tomography, power spectrum	O'Meara		2		2		
	IGM: thermal and ionization eq. of state	O'Meara, McCandliss*		2		2		
ology,	IGM/CGM imaging the cosmic web	Schiminovich	2	2	2	2		
Cosm	Near field cosmology: phase space of LG stars	Tumlinson			2	2	2	
	Reionization: mapping sources	Ouichi* (for galaxies), Finkelstein*			2	2	2	≤
	Testing gravity	???	2	≤				2
	Sandage Test	O'Meara, Schiminovich						
	Helium reionization	O'Meara		2				

COR SWG Subgroup	Science Driver	STDT or Community (*) Lead			COR SWG Subgroup	Science Driver	STDT or Community (*) Lead	INSTRUMENTATION NEEDS									
	014	T and a second	UV IM	UV Sp				UV IM	UV Spec	OIM	O Spec	IR Im	IR Spec				
	DM Distributions from stellar motions	Tumlinson via HDST report		1			Globular Clusters: WD Age-dating	JT to ask Kalirai			2		₹				
	DM: Strong lensing	???, Oguri*	2			CGM: gas inflow and outflow,	O'Meara, Gallagher, Tumlinson*, Matsuoka*										
tter	DM: Dwarf Galaxy Cores	Tumlinson (via HDST report)		1				2	2	2	2	2	2				
and Dark Matter	Galaxy LF evolution	Finkelstein*, Shiminovich	2			Galaxy structure	Postman, Teplitz	2		2		2					
art	Lyman Continuum	Calzetti (for dwarfs),	-	Ι.		evolution											
ם g	escape	Finkelstein*, Teplitz	2			Galaxy SF evolution	Teplitz, Shiminovich	v	≤		S						
	Distance ladder	Scowcroft*			B	<u>lo</u>	AGN outflows	Tremonti		<		✓					
Structure,	foundations The FUV and EUV background	O'Meara, McCandliss*, Shiminovich	2	1	Evolution	SMBH demographics & evolution	Peterson										
- v	Supernovae	Graham*	1			AGN	Peterson?	-	-	_	-	_	_				
Scale	IGM: tomography,	O'Meara			Galaxy	accretion disks			2	2	2						
e Se	power spectrum		_		Ö	Nearby galaxy	Tumlinson (consult with van der Marel)			≤							
Large	IGM: thermal and ionization eq. of state	O'Meara, McCandliss*			and	masses: proper motions						2	-				
ology,	IGM/CGM imaging the cosmic web	Schiminovich	2	1	ixies	Galaxy masses:	???	_		~	2		-				
Cosmo	Near field cosmology: phase space	Tumlinson			Gala	dynamics/ kinematics				M			-				
0	of LG stars				0	Star forming	Rigby, Teplitz										
	Reionization: mapping sources	Ouichi* (for galaxies), Finkelstein*		1		regions at z>=1 & Galaxy ISM		✓	✓	≤	✓						
	Testing ??? gravity	???				evolution	Fishelschart										
						High redshift galaxies	Finkelstein*			2	2	2	2				
	Helium reionization	O'Meara				AGN-stars interactions	McCandliss*	v	≤	₹							
	1010112.00011																

COR SWG Subgroup	Science Driver	STDT or Community (*) Lead			Subgroup Driver		Driver Community										-		Ci Su		_		-		-								-		-						Science Driver	STDT or Community (*) Lead			INSTRUMEN	TATION NEEDS		
			UV IM	UV Sp			(*) Lead						UVIM	UV Spec	O IM	O Spec	IR Im	IR																														
		Tumlinson via						UVIM	UV Sp		IMF: Microlensing	Tumlinson (via HDST			≤		≤																															
	Distributions from stellar motions	HDST report		1		Globular Clusters: WD Age-dating	JT to ask Kalirai				IMF: Origin	report) Calzetti, Gallagher,																																				
	DM: Strong lensing	???, Oguri*	S	1		CGM: gas	O'Meara,					others*	-	-	-	-	-	-																														
ы	DM: Dwarf	Tumlinson (via HDST		1		inflow and outflow,	Gallagher, Tumlinson*, Matsuoka*	2	(SF histories of nearby galaxies Massive stars	??? Evans*.			2																																	
Matter	Galaxy LF evolution	report) Finkelstein*, Shiminovich	2	1		baryon cycle Galaxy	Postman,	~		erse	in the MW and nearby galaxies	Garcia*, Barstow, Nota	2	2	2	2																																
Dark	Lyman	Calzetti (for				structure evolution	Teplitz		'	į	Environments	France,						T																														
and De	Continuum escape	dwarfs), Finkelstein*, Teplitz	2		_	Galaxy SF evolution	Teplitz, Shiminovich	₹	(Local Universe	of planet assembly	Pascucci, Fleming*, Padgett, Gomez de	2	2	2	2	2																															
	Distance ladder foundations	Scowcroft*				olution	AGN outflows	Tremonti		(Protostellar	Castro Schneider*,						-																													
- Pin-			_	_		5	SMBH	Peterson	_		d the	outflows & jets	Herczeg*, Padgett,	J J	2	2	2	2	I																													
Structure,	The FUV and EUV background	O'Meara, McCandliss*, Shiminovich	2	-	E C	demographics & evolution				n, and	Colorina et	Gomez de Castro			_																																	
	Supernovae	Graham*	✓	1			Peterson?	a		tic	Origin of elements	Roderer*																																				
Scale		O'Meara	O'Meara									disks	accretion disks			'	Evolution,	heavier than Fe		_	_	_																										
O	tomography, power spectrum				Galaxy		Tumlinson (consult with van der Marel)				ar Ev	Nearby Stellar Populations	Larsen*, Barstow, Padgett, Nota			≤	2																															
Larg		O'Meara, McCandliss*			and				(s, Stellar I	Bulk composition of exoplanets via WD obs	Gaensicke*, Barstow	1	2	2	2																																
ology,	IGM/CGM imaging the cosmic web	naging the	1	cies	Galaxy	???			Stars,	WD mass- radius relation	Barstow	2	2	2	2																																	
Ĕ	Near field	Tumlinson						masses: dynamics/					Neutron star eq. of state	???	2	2	1	2		Т																												
Cosm	cosmology: phase space				Gala	kinematics	Dishu Tasiha				Population III	Roderer*(for			2	2	2	+																														
	of LG stars Reionization: C	Ouichi* (for					Star forming Rig regions at	Rigby, Teplitz	-			Transient	metals), ??? Tumlinson via						-																													
		galaxies), Finkelstein*			1		z>=1 & Galaxy ISM		≤			stellar progenitors	HDST report	2	2	2	2	2																														
	Testing gravity	???		ł	-	evolution High redshift galaxies	Finkelstein*				Proto- planetary , circumstellar	France, Pascucci, Fleming*,	2	7	7	7	7																															
		O'Meara, Schiminovich		1							disks	Padgett, Gomez de Castro	2	2	⊻	2	2																															
	Helium reionization	O'Meara				AGN-stars interactions	McCandliss*	2	(Feedback & star formation	Tremonti	2	2	2	2	2																															


• Greatly expand the volume for cross-calibration of standard candles (e.g. Cepheids), and bring the uncertainty in H_0 to < 1% (Scowcroft)

- Greatly expand the volume for cross-calibration of standard candles (e.g. Cepheids), and bring the uncertainty in H_0 to < 1% (Scowcroft)
- Direct detection of the expansion of the universe (Shiminovich, O'Meara)

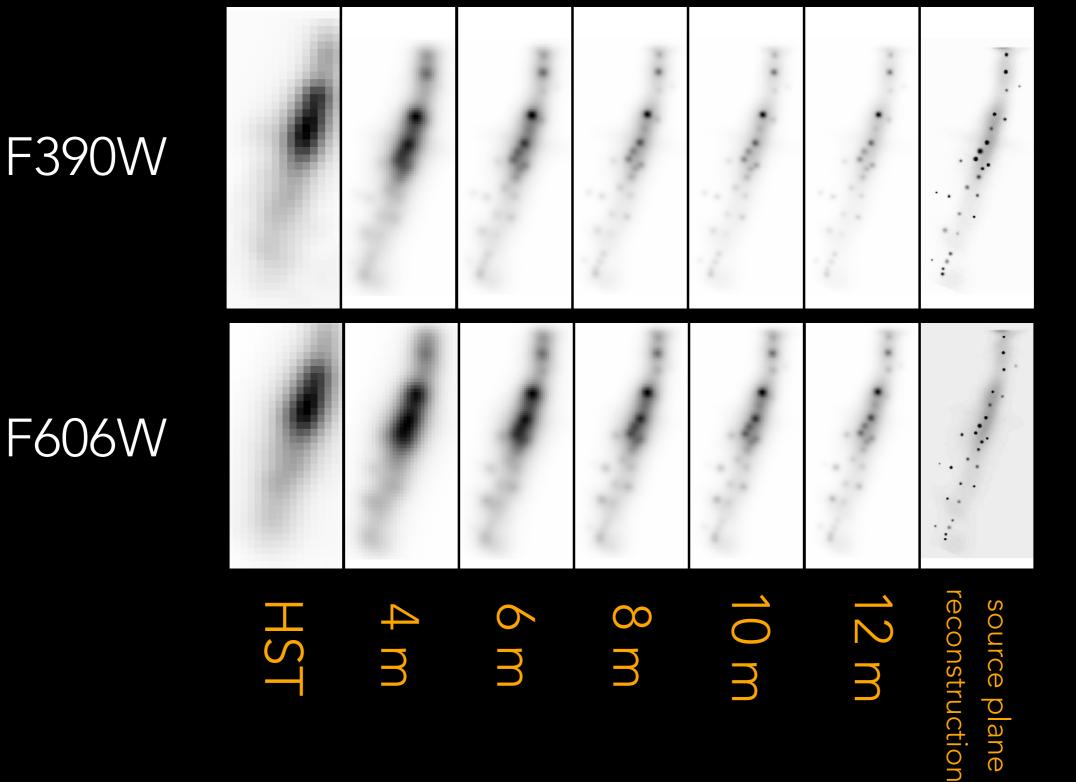
- Greatly expand the volume for cross-calibration of standard candles (e.g. Cepheids), and bring the uncertainty in H_0 to < 1% (Scowcroft)
- Direct detection of the expansion of the universe (Shiminovich, O'Meara)
- The power spectrum, thermal, and ionizing history of the IGM from 0 < z < 1.5, Helium reoinization (O'Meara, McCandliss)

- Greatly expand the volume for cross-calibration of standard candles (e.g. Cepheids), and bring the uncertainty in H_0 to < 1% (Scowcroft)
- Direct detection of the expansion of the universe (Shiminovich, O'Meara)
- The power spectrum, thermal, and ionizing history of the IGM from 0 < z < 1.5, Helium reoinization (O'Meara, McCandliss)
- The evolution of the escape of ionizing radiation over cosmic time (McCandliss)

KEEP THE LUV IN LUVOIR!

 Understand structure formation and evolution in massive galaxies, and pushing into the central 1 kpc over cosmic time (Whitaker)

- Understand structure formation and evolution in massive galaxies, and pushing into the central 1 kpc over cosmic time (Whitaker)
- Dynamical masses for black holes in AGN, and the SMBH mass distribution (Peterson, Matsuoka)


- Understand structure formation and evolution in massive galaxies, and pushing into the central 1 kpc over cosmic time (Whitaker)
- Dynamical masses for black holes in AGN, and the SMBH mass distribution (Peterson, Matsuoka)
- Map the CGM in 2-D using quasars AND galaxies as background sources (Tumlinson, Matsuoka, O'Meara)

- Understand structure formation and evolution in massive galaxies, and pushing into the central 1 kpc over cosmic time (Whitaker)
- Dynamical masses for black holes in AGN, and the SMBH mass distribution (Peterson, Matsuoka)
- Map the CGM in 2-D using quasars AND galaxies as background sources (Tumlinson, Matsuoka, O'Meara)
- The first quasars (Matsuoka)

- Understand structure formation and evolution in massive galaxies, and pushing into the central 1 kpc over cosmic time (Whitaker)
- Dynamical masses for black holes in AGN, and the SMBH mass distribution (Peterson, Matsuoka)
- Map the CGM in 2-D using quasars AND galaxies as background sources (Tumlinson, Matsuoka, O'Meara)
- The first quasars (Matsuoka)
- The galaxy luminosity function from -16 < M < -10, and direct observations of the gas and dust in the first, most metal-poor galaxies (Finkelstein)

- Understand structure formation and evolution in massive galaxies, and pushing into the central 1 kpc over cosmic time (Whitaker)
- Dynamical masses for black holes in AGN, and the SMBH mass distribution (Peterson, Matsuoka)
- Map the CGM in 2-D using quasars AND galaxies as background sources (Tumlinson, Matsuoka, O'Meara)
- The first quasars (Matsuoka)
- The galaxy luminosity function from -16 < M < -10, and direct observations of the gas and dust in the first, most metal-poor galaxies (Finkelstein)
- Observing structures down to 0.0003L* (Postman)

STAR FORMING REGIONS DOWN TO 100PC AT Z>1

J. Rigby

 Characterize the first stars, supernovae, and metals in the universe via UV spectra of the most metal poor stars (Roderer) Region where a 10-meter telescope could observe giants with high spectral resolution in the UV (~ 20 kpc; or dwarfs to ~ 4 kpc)

- most of the inner halo
- numerous stellar streams
- dozens of globular clusters

SUN

Region where HST can observe giant with high spectral resolution in the UV (~ 500 pc; or dwarfs to ~ 100 pc)

A ~10-meter space telescope could observe the UV spectrum of nearly any star whose optical spectrum is accessible today from the ground.

(except in regions of high extinction)

 Characterize the first stars, supernovae, and metals in the universe via UV spectra of the most metal poor stars (Roderer)

- Characterize the first stars, supernovae, and metals in the universe via UV spectra of the most metal poor stars (Roderer)
- Very early/very late time observation of SNe for unique signatures of the progenitor appear (Graham)

- Characterize the first stars, supernovae, and metals in the universe via UV spectra of the most metal poor stars (Roderer)
- Very early/very late time observation of SNe for unique signatures of the progenitor appear (Graham)
- Robust exploration of the environments where planets form (France, Pascucci, Fleming)

STARS, STELLAR EVOLUTION, AND THE LOCAL UNIVERSE

- Characterize the first stars, supernovae, and metals in the universe via UV spectra of the most metal poor stars (Roderer)
- Very early/very late time observation of SNe for unique signatures of the progenitor appear (Graham)
- Robust exploration of the environments where planets form (France, Pascucci, Fleming)
- Measure protostellar jet mass flux, collimation, rotation, interaction. Measure the launching and mass flux of disk winds, and mass flows in the inner disk (Schneider, Herczeg, Gómez de Castro)

STARS, STELLAR EVOLUTION, AND THE LOCAL UNIVERSE

- Characterize the first stars, supernovae, and metals in the universe via UV spectra of the most metal poor stars (Roderer)
- Very early/very late time observation of SNe for unique signatures of the progenitor appear (Graham)
- Robust exploration of the environments where planets form (France, Pascucci, Fleming)
- Measure protostellar jet mass flux, collimation, rotation, interaction. Measure the launching and mass flux of disk winds, and mass flows in the inner disk (Schneider, Herczeg, Gómez de Castro)
- The extinction law from UV to IR in the Galaxy (Gómez de Castro)

HISTORICAL POINT 2 YODA WAS RIGHT

HISTORICAL POINT 2 YODA WAS RIGHT

THE STAR WARS SAGA CONTINUES

MARK HAMILL · HARRISON FORD · CARRIE FISHER BILLY DEE WILLIAMS · ANTHONY DANIELS

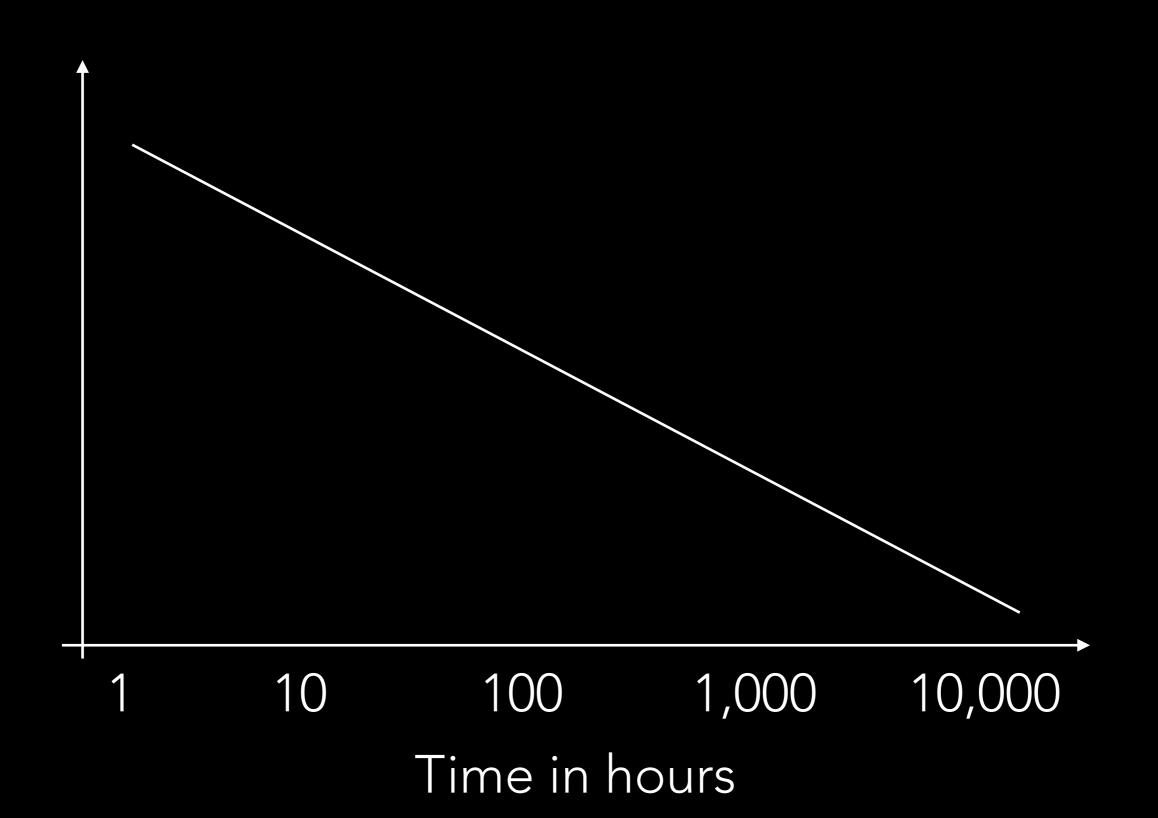
Costume DAVD PROWSE KENNY BAKER + PETER MARHEW - RANK CZ December IRVIN KERSHNER Research GARY KURTZ REDUCT LEIGH BRACKETT and LAWRENCE KASDAN 2011 TO GEORGE LUCAS Lessens induse GEORGE LUCAS Marchy JOHN WILLIAMS

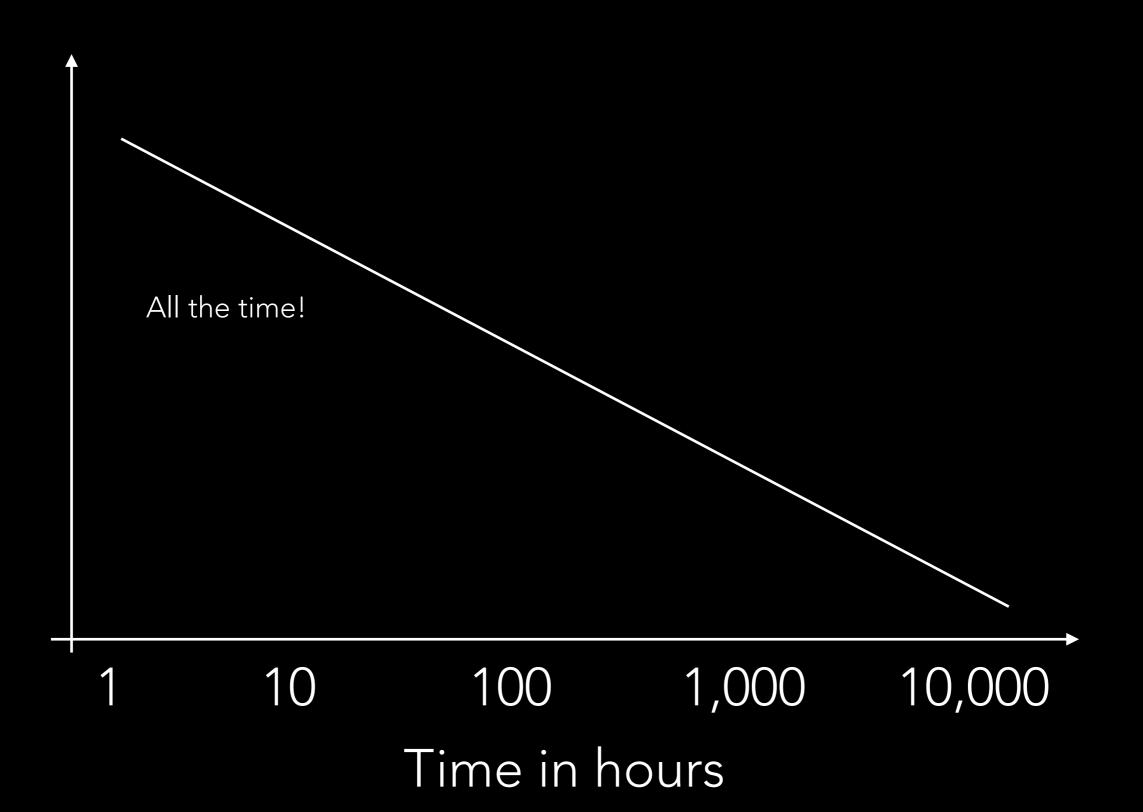
the sale will be surface roll conto

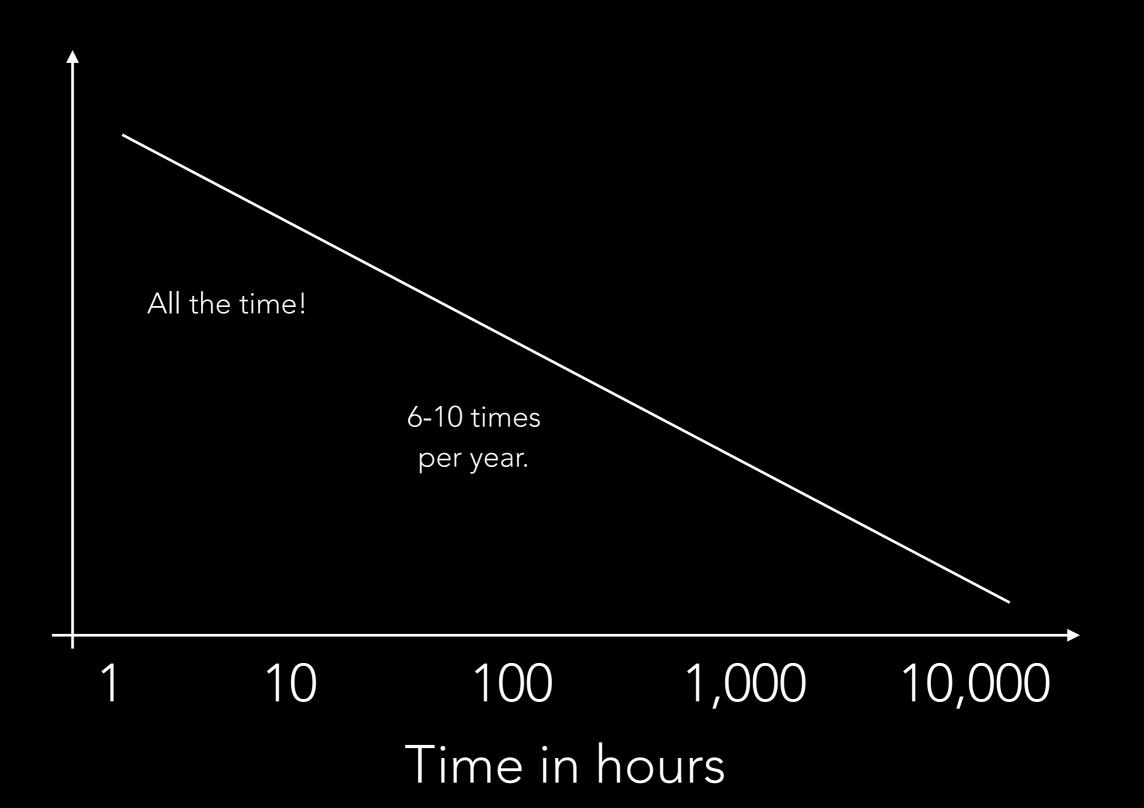
PG PRENTIL DURINGE SUDJESTED 4220 A Lucastim Ltd Production - A Twortleth-Century Fox Release

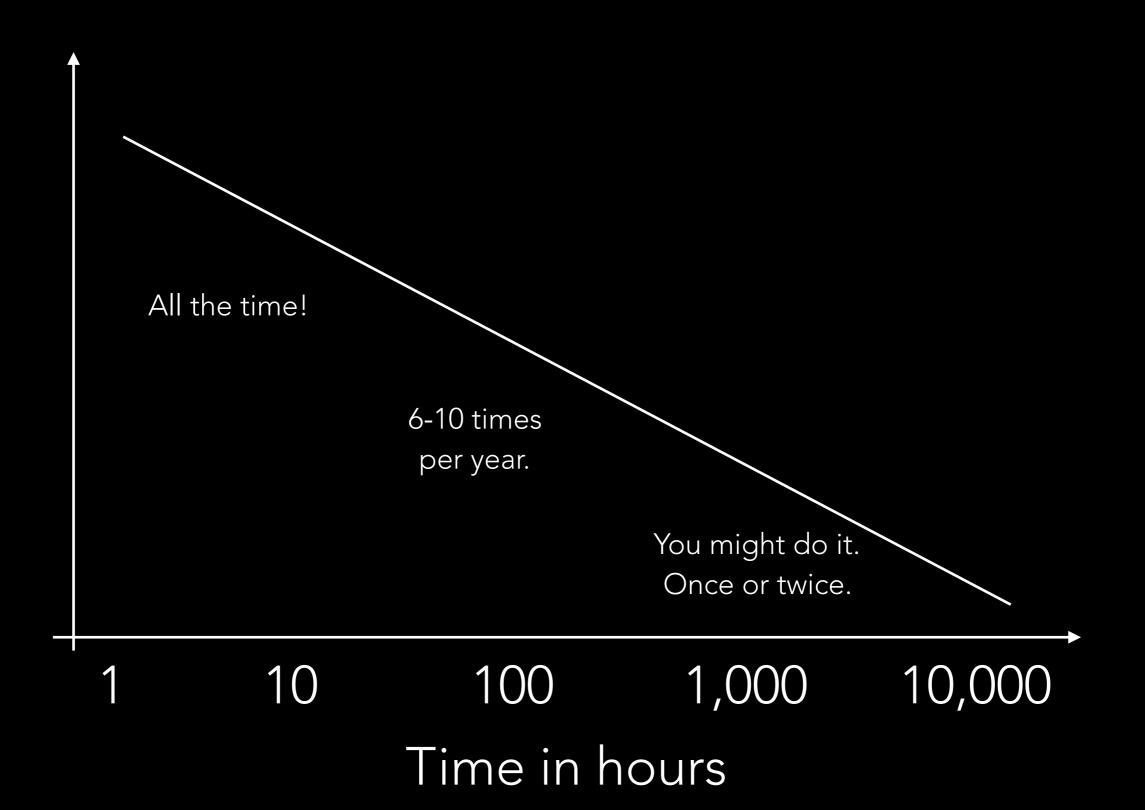
"you want the impossible"

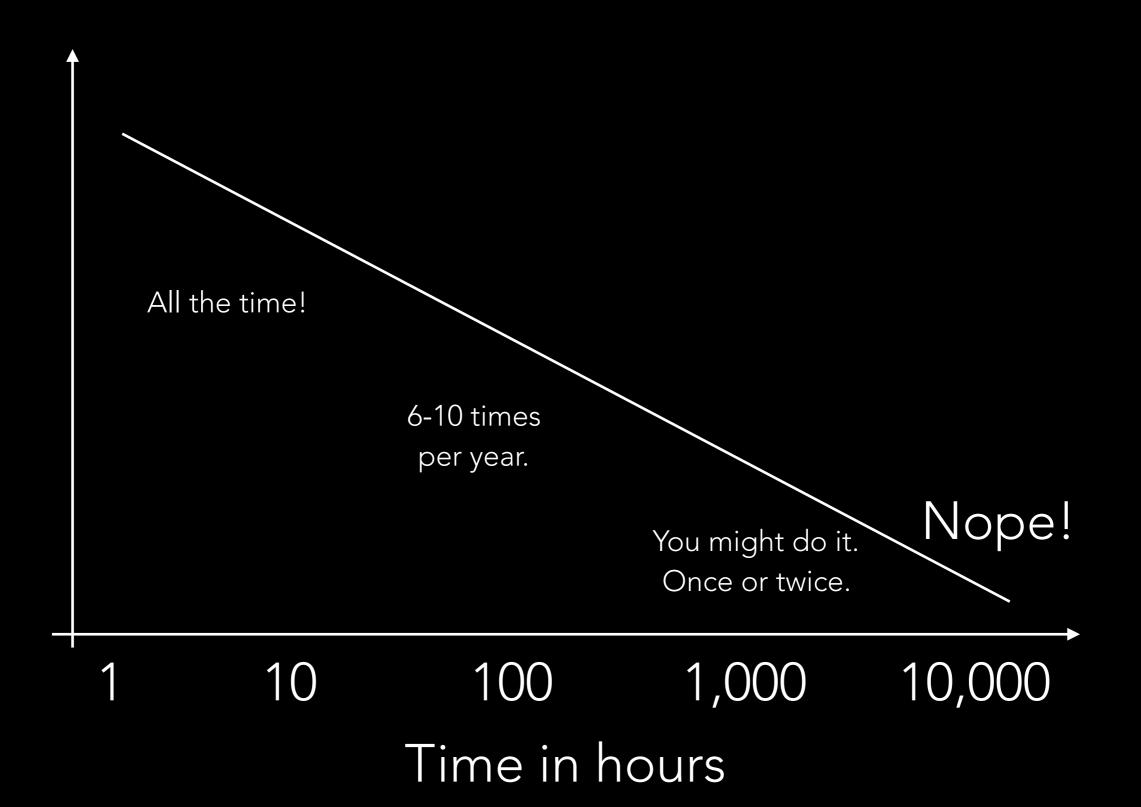
"you want the impossible"

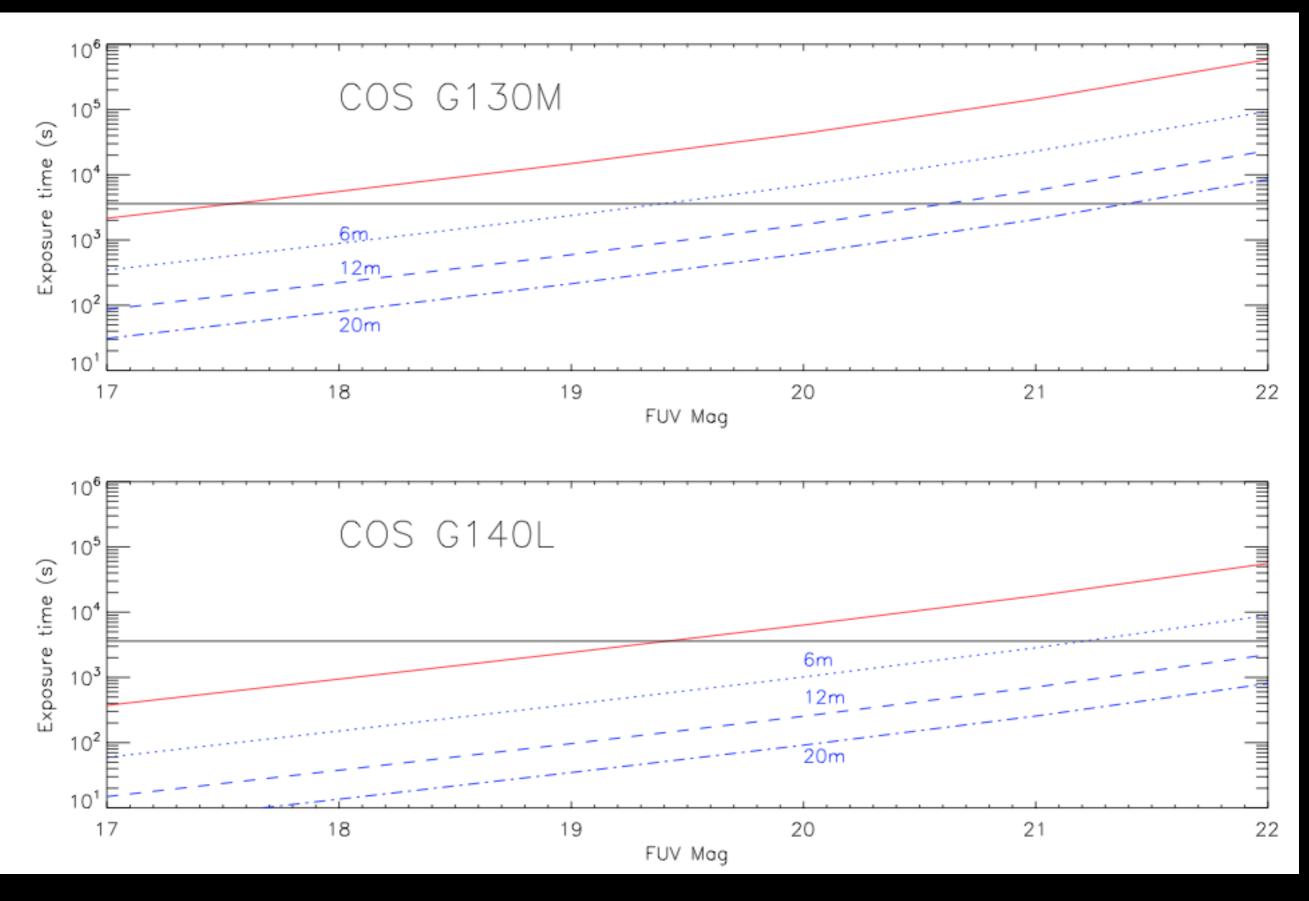

"you want the impossible"

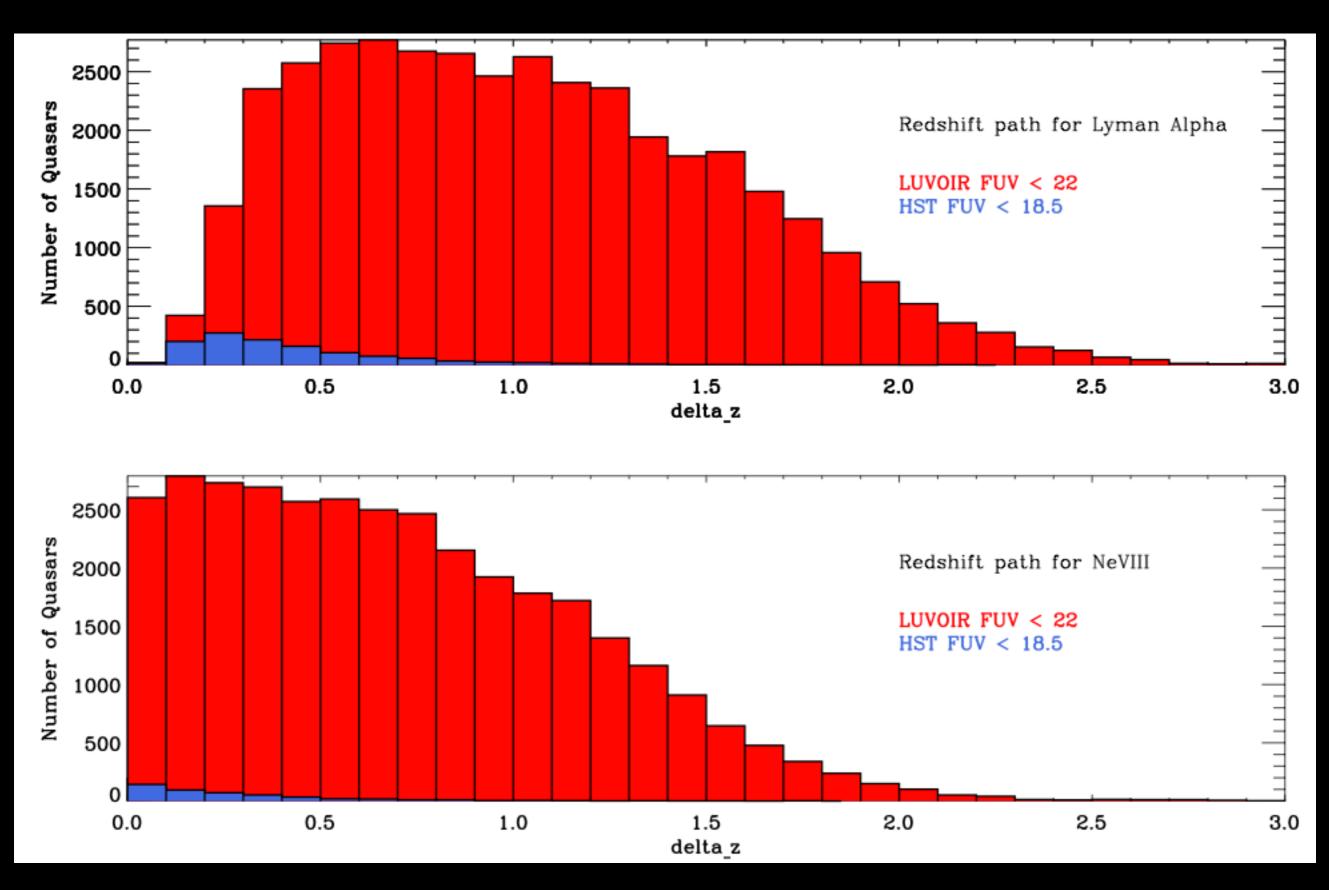

"that...is why you fail"


 Perform a measurement or make a discovery that has never been made


- Perform a measurement or make a discovery that has never been made
- Hard to predict


- Perform a measurement or make a discovery that has never been made
- Hard to predict
- A different, operational definition: turn a program that requires > 1000 hours into a routine one



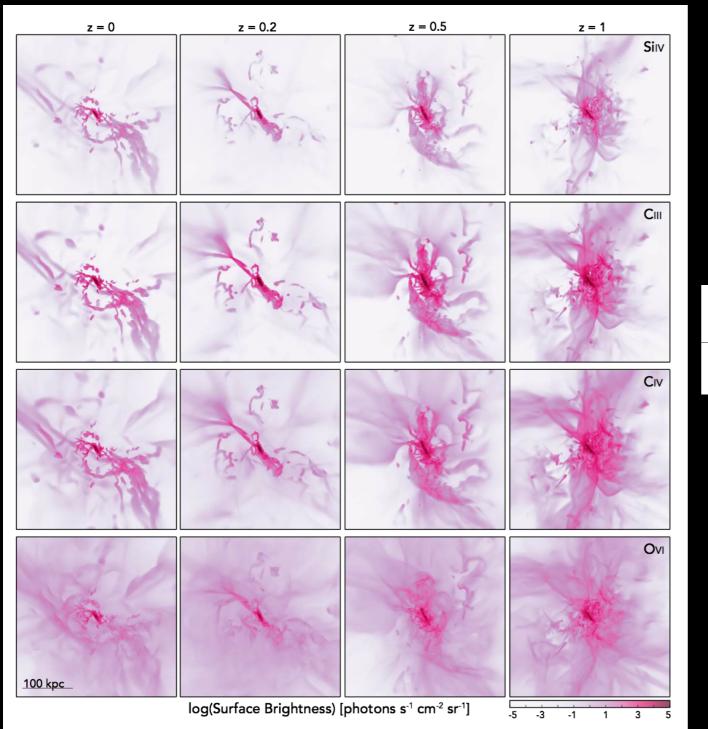


POINT SOURCE UV SPECTROSCOPY

POINT SOURCE UV SPECTROSCOPY

• A science case "requiring" 10+ meter apertures might be met with the retort "we can do that with 6 meters!"

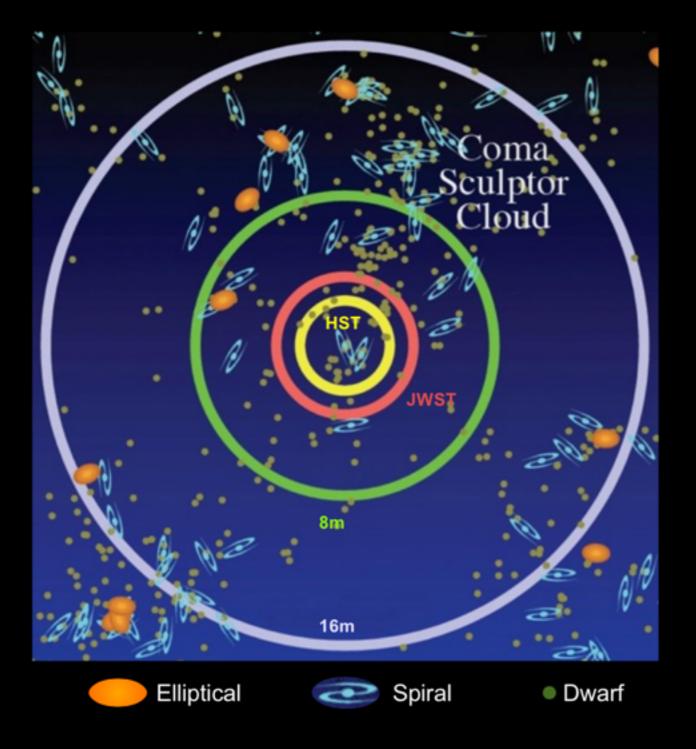
- A science case "requiring" 10+ meter apertures might be met with the retort "we can do that with 6 meters!"
- Sometimes this is right! You can, but you probably won't

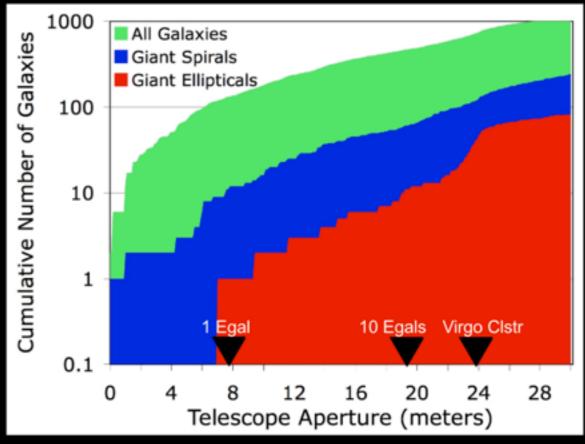

- A science case "requiring" 10+ meter apertures might be met with the retort "we can do that with 6 meters!"
- Sometimes this is right! You can, but you probably won't
- Smaller apertures take longer times, reducing the number of large investments you can make, *shrinking the total discovery space*

We should not be comparing raw capacity when we compare apertures

- We should not be comparing raw capacity when we compare apertures
- We should compare total science programs, considered holistically, bound by the ultimate limited resource: mission lifetime

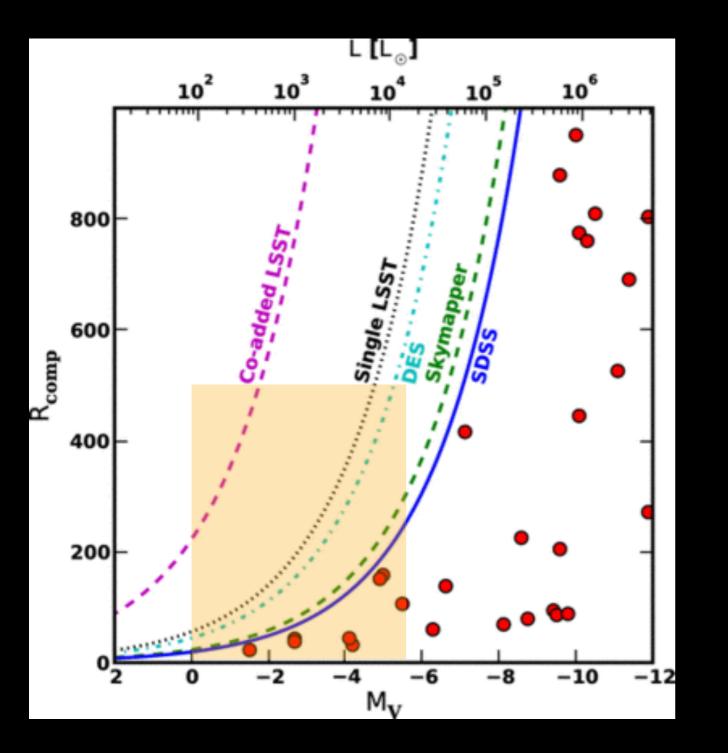
DOING THE IMPOSSIBLE WITH LUVOIR

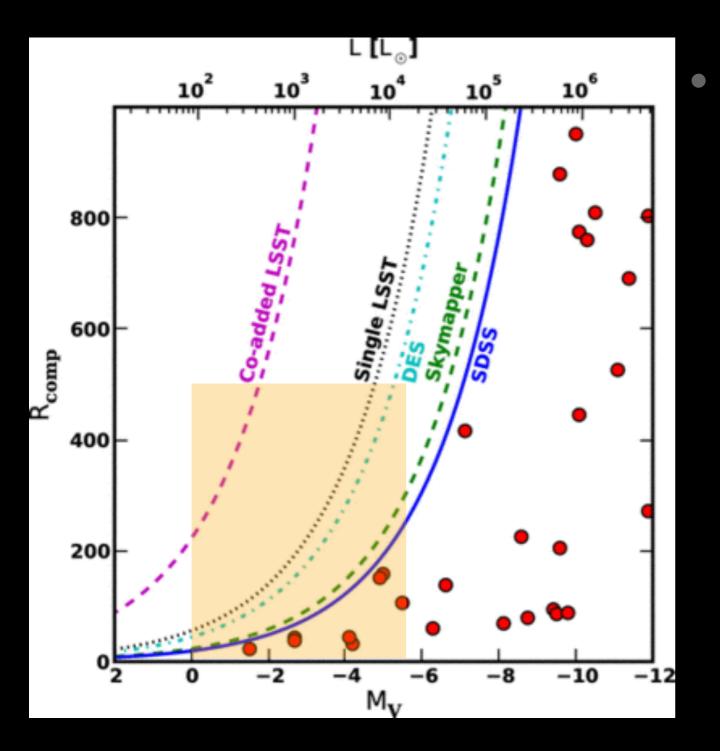

imaging the CGM at z<2 to unravel galaxy fueling and feedback



10 meter telescope 15 minutes 40 hours -3 log(Surface Brightness) [photons s⁻¹ cm⁻² sr⁻¹] 500 hours 3 hours 4 meter telescope

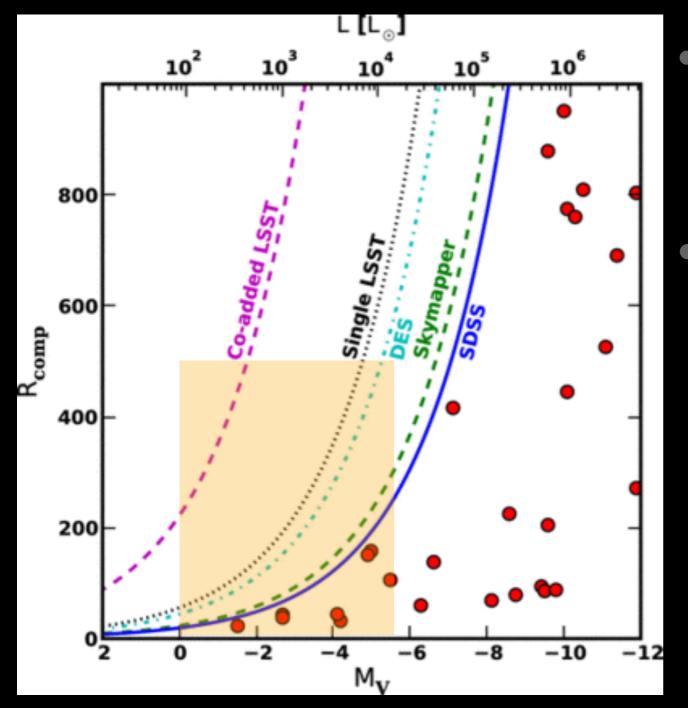
Corlies & Schiminovich (2016)


Star formation histories and the IMF

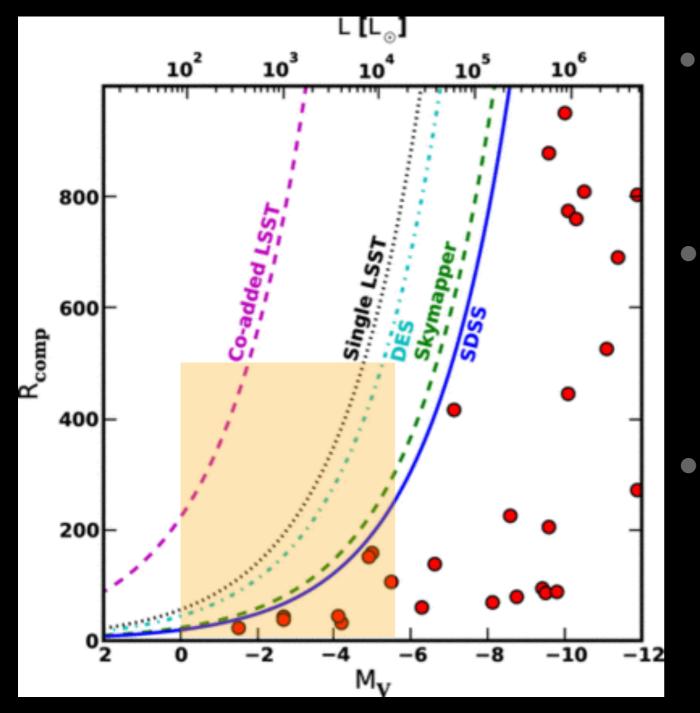


8-12 meter aperture reaches 1-3 giant ellipticals

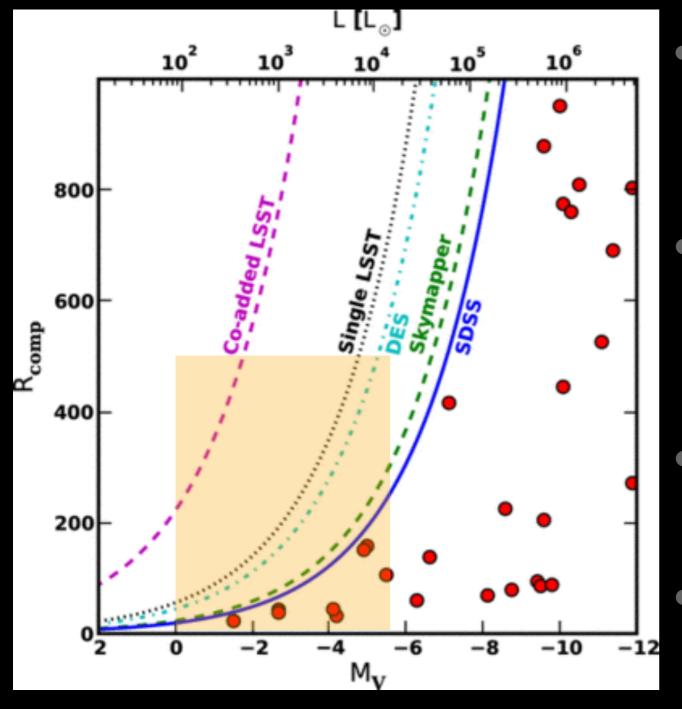
Probe star formation and dark matter in the darkest halos hundreds of faint MW satellites to be discovered by LSST.



Probe star formation and dark matter in the darkest halos hundreds of faint MW satellites to be discovered by LSST.

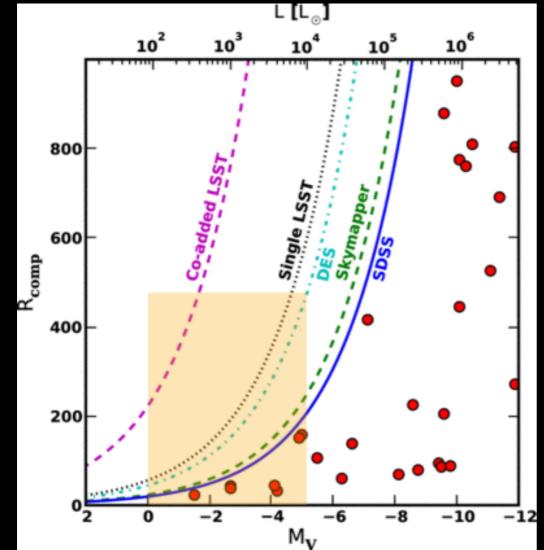

LSST will reach ~100% "completeness" for the faintest dwarfs out to 400 kpc.

Probe star formation and dark matter in the darkest halos hundreds of faint MW satellites to be discovered by LSST.


LSST will reach ~100% "completeness" for the faintest dwarfs out to 400 kpc.
Measuring their IMF requires reaching 3 mag below main sequence TO.

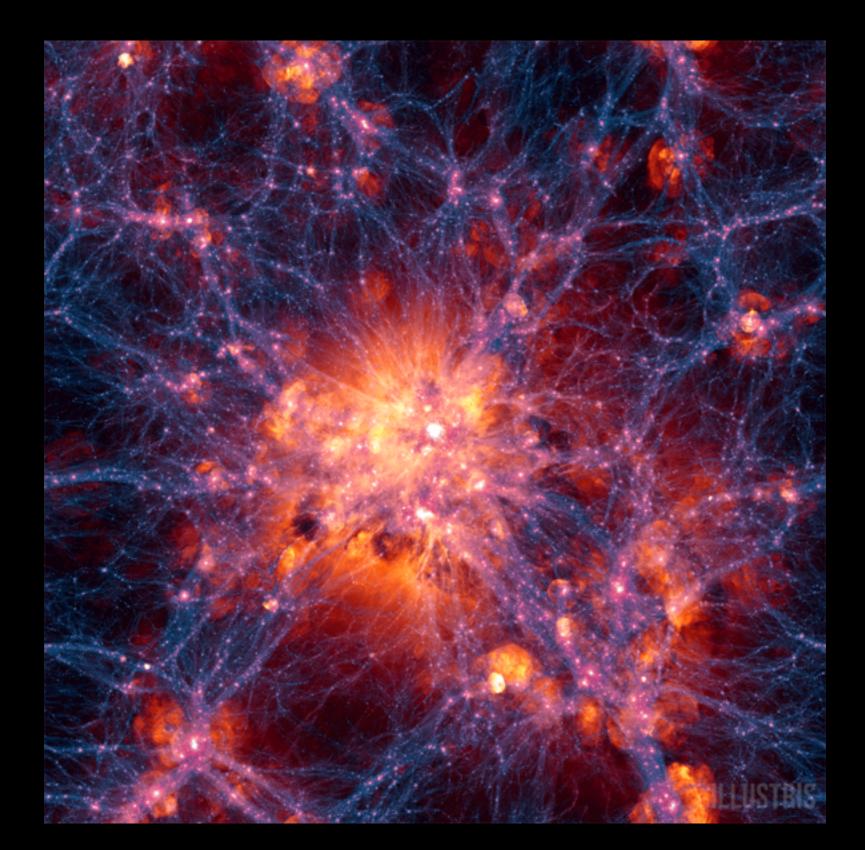
Probe star formation and dark matter in the darkest halos hundreds of faint MW satellites to be discovered by LSST.

LSST will reach ~100% "completeness" for the faintest dwarfs out to 400 kpc. Measuring their IMF requires reaching 3 mag below main sequence TO. 12 m LUVOIR can do this at 500 kpc


Probe star formation and dark matter in the darkest halos hundreds of faint MW satellites to be discovered by LSST.

LSST will reach ~100% "completeness" for the faintest dwarfs out to 400 kpc.
Measuring their IMF requires reaching 3 mag below main sequence TO.

- 12 m LUVOIR can do this at 500 kpc
 - 4 m reaches ~200 kpc, but this is 50x less volume and still inside R_{vir}.


Probe dark matter in the darkest halos - hundreds of faint MW satellites to be discovered by LSST.

Velocity dispersions are 1-5 km/s. Measure DM potential in most DMdominated and isolated galaxies. What is the DM?

Distance	Speed	Example	Goal
10 pc (nearest stars)	10 cm s⁻¹ 0.2 mph		planets
100 pc (nearest SF regions)	100 cm s ⁻¹ 2.2 mph		planets in disks
10 kpc (entire MW disk)	0.1 km s ⁻¹ 223 mph	3-2000	dissipation of star clusters
100 kpc (MW halo)	1 km s⁻¹ 2200 mph	1 A	DM dynamics in dwarf sats.
1 Mpc (Local Group)	100 km s ⁻¹		3D motions of all LG galaxies
10 Mpc (Galactic Neighborhood)	100 km s ⁻¹		cluster dynamics

THESE WILL ONLY GET BETTER. LUVOIR CAN ECLIPSE THEM, AND DEMAND THEIR SUCCESSORS

THE LUVOIR STDT MAY NOT KNOW WHAT THE MOST IMPORTANT SCIENCE OF 2035 IS

HISTORICAL POINT 3

HISTORICAL POINT 3

THE LUVOIR STDT MAY NOT KNOW WHAT THE MOST IMPORTANT SCIENCE OF 2035 IS

Scientific Uses of the Large Space Telescope

AD HOC COMMITTEE ON THE LARGE SPACE TELESCOPE SPACE SCIENCE BOARD NATIONAL ACADEMY OF SCIENCES-NATIONAL RESEARCH COUNCIL

NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. 1969

• 1) We don't know the future

• 1) We don't know the future

• 2) We can't read minds

1) We don't know the future

We should only consider a LUVOIR that can also do as of yet unknown science. Be flexible <u>and</u> powerful.

• 2) We can't read minds

1) We don't know the future

We should only consider a LUVOIR that can also do as of yet unknown science. Be flexible <u>and</u> powerful.

• 2) We can't read minds

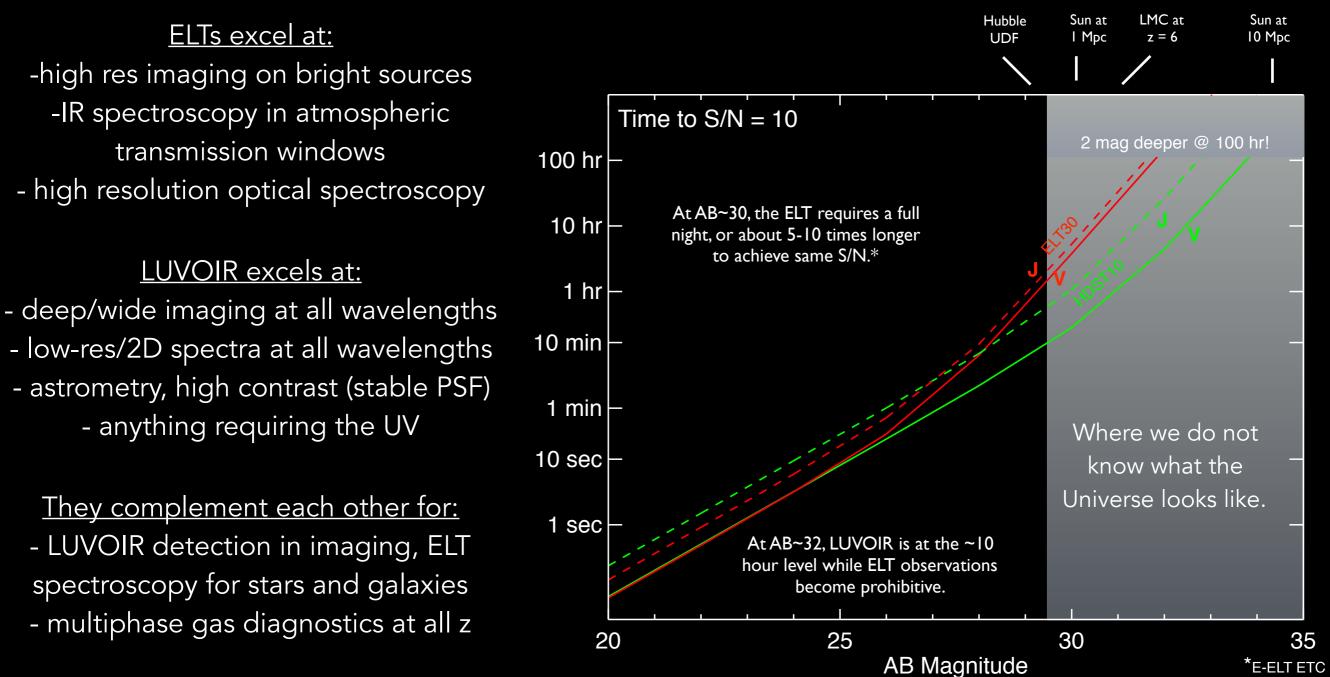
We must make a serious effort to reach out and listen to the full community, and give them the tools to think big.

HISTORICAL POINT 4

WE HAVE ALWAYS HAD LARGER TELESCOPES ON THE GROUND. THAT'S OK

HISTORICAL POINT 4

WE HAVE ALWAYS HAD LARGER TELESCOPES ON THE GROUND. THAT'S OK


THERE IS UNPRECEDENTED JOINT DISCOVERY SPACE

- LSST
- TMT/EELT/GMT
- SKA
- ALMA
- Many others

Let's use both, each at what it is best for

At 1.5 μm (H), a diffraction-limited 30m will reach the same spatial resolution as a space-based 10m at 0.5 $\mu m.$

Sky backgrounds prevent ground-based ELTs from applying their spatial resolution at the faintest desirable limits.

EMERGING INSTRUMENT THEMES

- UVOIR imaging with as wide a FOV as possible
- Low (R~100) to moderate (R~5,000) UVOIR MOS or IFU
- High (R>25,000) point source UVO spectrograph
- FUV spectroscopic capability (Lyman edge)

ALSO WORTH CONSIDERING

- Polarimetry
- Fast timing
- Ultra-precise astrometry
- Laser comb
- Energy resolving detectors

WHAT COULD WE DO IF WE HAD?

- µ-arcsecond astrometry
- S/N 10,000 at R=100,000
- Photon counting at extremely high rates
- R=1,000,000 spectroscopy

• We have a huge parameter space in COR science with LUVOIR, some of it not yet known

- We have a huge parameter space in COR science with LUVOIR, some of it not yet known
- Much of it is revolutionary, and requires a revolution

- We have a huge parameter space in COR science with LUVOIR, some of it not yet known
- Much of it is revolutionary, and requires a revolution
- We have a lot of work to do, and we should not go it alone

- We have a huge parameter space in COR science with LUVOIR, some of it not yet known
- Much of it is revolutionary, and requires a revolution
- We have a lot of work to do, and we should not go it alone
- It's time to build the tools, make the plots, and write the story

"It's kind of fun to do the impossible"

-WALT DISNEY