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Direct Imaging Science is
Distinctive

Kepler, RV, microlensing
primarily reveal planetary
system architectures.
Direct imaging isolates &
detects light directly
from the planet.




What about Transit Spectroscopy?
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Cool giants have distinct atmospheric
physics/chemistry from hot transiting planets
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Example: Diversity of Jupiters

Clouds depend on
BOTH internal heat
flow (mass, age) and

incident flux.

Color and albedo are
functions of type and
depth of clouds.

photoc
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Favorable RV
Planets for
Direct
Imaging w/

2.4-m
telescope
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Won’t WFIRST Do All This?

* Coronagraph Instrument is technology
demonstrator for high contrast imaging

* Only 2.4-m telescope, 1 year for coronagraph

Lupu et al. (2016)



Diverse Exoplanet Science

- Characterize all possible planets

- provides context for habitable planets

 need to understand systems holistically incl. near misses

- Nature of super Earths/sub-Neptunes

- Giant planets

- easier, outstanding spectroscopy targets (OWA requirement)

- |laboratories for clouds, photochemistry, formation, stellar
Influence, etc.



Terrestrial Exoplanets With LUVOIR

...or why we need a large, space-based telescope beyond JWST.

s Victoria Meadows (University of
tvP’ Lustig-Yaeger, Giada Arney, Eddi
NAI Virtual Planetary Laborator

ashington, Seattle), Ty Robinson, Jake
shwieterman and the



Comparative Planetology

Are we weird?
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A Big Telescope for Small Planets

i
 Comparative Planetolo o)

— What is the nature of

— How are super-Eart
other, and to other ".

— What can these pla
processes in differe

— Can abiotic planeta

P L"
&urfaces and atmospheres?

d njml -Neptunes related to each
w:*SoIar System?

| ~ .4. s ak Qgt terrestrial planetary
h ",-emlcal regimes?

 The Search for Life Be
— What are the characteris
— Are they habitable?
— Do they exhibit signs of life?

.— With a meaningful statistical samp ;Jf: prevalence
of habitable and inhabited planets in o alaxy?



JWST, WFIRST, ELTs provide initial opportunities on a few targets
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Saturn
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Figure 3. Number of nearby stars amenable to WFIRST photometric
detection of super-Earths (green) and mini -Neptunes (blue) at S/N 7 with
1 day of V band integration. The simulation uses the hybrid Lyot
coronagraph PSF and mask information, and requires the planet semi-
major axis to be > 1.15 times the IWA, equivalent to detecting the

planet within £30° of elongation. This provides 33% completeness in a
single observation.

For JWST, WFIRST, the number of targets accessible will be small:
JWST may obtain spectra of 1-3 HZ terrestrials orbiting M dwarfs.

ELT direct imaging could access ~ 12 late M dwarfs, not all will have HZ planet
WFIRST could detect ~5 super-Earths around F and G dwarfs with 1-2 spectra




Small Planets with WFIRST
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Figure 4. Preliminary simulations of observations taken with WFIRST AFTA-C for a mini-Neptune orbiting Beta Hydri whose
spectrum is dominated by CH, absorption (left) and a super-Earth in the HZ of Tau Ceti (right) with a spectrum dominated by
Rayleigh scattering and ozone and water absorption. The exposure times per 10% band given in the respective plots. Note
that the super-Earth-analog has been degraded to R~35, losing sensitivity to the oxygen A-Band. These simulations show that
spectroscopic observations of 300 hrs or more could be used produce high S/N spectra of super-Earths and mini-Neptunes.

Meadows et al., WFIRST SIT proposal
Figures by Ty Robinson



LUVOIR will be able to observe tens of HZ Earths

LUVOIR should be able to directly image
tens of Earth-sized planets in the Habitable
Zone.

Ultraviolet Visible Near infrared Mid infrared

JWST

Hubble
Dalcanton et al., 2015



LUVOIR will be able to observe tens of HZ Earths

LUVOIR should be able to directly image
tens of Earth-sized planets in the Habitable Brown

Zone . = Brown (logarithmic a)
Brown (logarithmic a & e=0)
Optimistic Kopparapu
Optimistic Kopparapu (e=0)
Pessimistic Kopparapu (e=0)

ExoEarth Yield

Stark et al., 2015
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LUVOIR will access planets orbiting a broad range of stellar types
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Fig. 1.— The distribution of stellar spectral types in the design reference mission (DRM) for a 12 m HDST
(green) and for a 4 m exoplanet mission (blue). The histograms show the number of stars in each spectral
type surveyed with a survey integration time of 1 year (which includes spectroscopic characterization of
Earth-like planets). HDST surveys a total of 561 stars. The 4 m space telescope surveys 74 stars. The Stark
et al. (2015) altruistic yield optimization algorithm is used in these DRMs.



Refraction Limits Altitudes Probed in Transmission

Refraction in Transit Transmission Spectra
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« Transmission spectra - from JWST or the ground — cannot observe the planetary surface

» For every planet/star system there will be a maximum pressure (or minimum atmospheric

altitude) that can be probed.

« Can probe deeper for planets in M dwarf habitable zones (but still limited to 8-10km)
Habitable planets orbiting Sun-like stars are not accessible.

Garcia-Munoz et al., 2012; Misra, Meadows and Crisp., 2014; Bertremieux & Kaltenegger, 2013, 2014



Habitable terrestrials have dry stratospheres
_H,0O difficult to detect in transmission!
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...a wet stratosphere indicates a planet in crisis!



Self-Consistent Earth orbiting an M3.5V seen in transmission
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Spectrum of self-consistent Earth around an M3.5V from Segura et al., 2005.
Transmission model (includes refraction) from Misra et al., 2014.

Water vapor is not seen at shorter wavelengths as the much weaker signal is swamped
by CH, at 1.1 and 1.4um!

Identifying terrestrial planets with water vapor will be challenging in transmission



Simulated JWST/NIRISS Spectrum of M3.5V Earth
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Many (non-O,) biosignatures will be confined to the deep atmosphere
Transmission cannot probe there.

Early Earth with a sulfur-dominated biosphere
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« Exotic biosignature molecules that are more susceptible to UV radiation will be less

abundant and found in the lower troposphere only - may not be accessible to transmission.
« Many of these molecules also have their strongest features in the MIR.



Haze can severely limit transmission spectra
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Haze is not as big an issue for direct imaging

Hazy Earth Sun at O Ga
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Thin haze still allows access to the deeper atmosphere,
including detection of tropospheric water vapor, even at visible
wavelengths.



LUVOIR targets will orbit earlier type stars as well as M dwarfs

Susceptible to fewer biosignature false positive mechanisms

1. H Escape from Thin N-Depleted Atmospheres

(Wordsworth & Pierrehumbert 2014)
Direct Imaging - F, G, K, M Dwarfs

XUV/UV flux

stable oxygen
atmosphere

2. Photochemical Production of O,/0O; (Domagal-

Goldman et al.; Tian et al., 2014, Harman et al., 2015)
Transmission - M Dwarfs
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3. O,-Dominated Post-Runaway Atmospheres

from XUV-driven H Loss (Luger & Barnes 2014)
Transmission - M Dwarfs

4. CO, Photolysis in Dessicated Atmospheres

(Gao, Hu, Robinson, Li, Yung, 2015)
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LUVOIR targets will orbit earlier type stars as well as M dwarfs ‘..V ’
Susceptible to fewer biosignature false positive mechanisms P
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Abiotic O, generation can be identified...

if we have wavelength coveraqe in the visible to near-lnfrared
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Figure 1. Synthetic reflectance spectra of 1, 10, and 100 bar
high-O2 atmospheres (yellow, green, and blue, respectively)
with Oz and O4 bands identified. A comparable Earth spec-
trum is shown in black.



Visible O, bands may reveal O, from atmospheric loss
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Phase Dependent Imaging of Terrestrials — Ocean Detection OCVP’
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The Money Plot

05 Modern Earth (5pc, 24hr)
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Direct Imaging of Terrestrials —

Some Issues

Haze can have
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Direct Imaging of Terrestrials — Some Issues

planet - star flux ratio x 10°
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Long band-pass simultaneous nulling is highly desirable

_Hazy Earth at 10pc (200hr) Modern Earth (10pc, 200hr)
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0.08

The 200 hrs here is PER BANDPASS. With, say, 4 nulling bandpasses spanning the
wavelength range, this would be 800 hrs on target.

(*might need multiple coronagraphs! )

Being able to bin down spectral resolution on fainter targets will be crucial
— low to no noise detectors needed!



M Dwarf HZs may be accessible over limited wavelength

25 _GJ876 HZ Inner Edge (4.66pc, 200hr) __GJ876 HZ Outer Edge (4.66pc, 200hr)
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This is great for comparative planetology as LUVOIR can access true Solar System
analogs as well as some M dwarf planets.

Wavelength range accessibility also depends on position in the HZ!



LUVOIR will have unique capabilities

Observations by upcoming missions, including JWST, WFIRST and
ground-based telescopes will provide initial opportunities to study
the atmospheres and surfaces of HZ terrestrials.

— the number of targets accessible will be small (or possibly non-existent).

— transmission spectroscopy cannot access the troposphere and surface,
where most water, and a'wider array of biosignatures may be present.

— JWST and ELTs are Iimite‘,d‘tqﬁﬁ dwarf planets, where possible false
positives for biosignatures are potentially much higher.

— Provide meaningful statisticS'€ n th Tractlon of worlds that are habitable
and that support life

wn.
— Vastly improved capability to search for habitability and biosignatures.



