

Aerospace's Assessment of Risk vs Cost

Intro

- Notes presented are taken from "CATE Overview Astro2020 Large Mission Concepts" presentation by The Aerospace Corporation in September, 2016
- Some LUVOIR specific notes are included to show where LUVOIR stands qulaitatively
- Original Aerospace Presentation can be found at <u>https://asd.gsfc.nasa.gov/luvoir/events/events/telecons/2016-09-20/emmons.pptx</u>

What is the CATE?

- The CATE process was developed by NAS/Aerospace for recent Decadal Surveys
 - Congress mandates the use of the CATE
 - CATE estimates are required to reflect historical project growth

What is the CATE?

Engineering team presented our version of this at the previous STDT meeting.

What is the CATE?

 CATE process differs from typical Independent Cost Estimate (ICE) process

- Starts with ICE
- Adds three types of cost threats, where appropriate:
 - Schedule
 - design (mass & power growth), and
 - launch vehicle

Analogy Based <u>Schedule Risk</u> Process Overview

Cost Risk Process Overview

Used to estimate reserves

Example Cost Risk S-Curve

Design Growth

- All CATE estimates based on project team inputs
 - Aerospace accounts for the maturity of the design presented so that more mature concepts aren't penalized for being too detailed.
 - Aerospace accounts for the current state of technology development
- Aerospace indicates that mass and power drive cost estimates from both analogies and models
 - LUVOIR is applying aerospace & GSFC standards and recommendations for mass and power margins/reserves

Launch Vehicle Threats

- Aerospace will add the cost of moving to next larger launch vehicle as the "Launch Vehicle" cost threat if mass contingency results in less than 10% launch vehicle mass margin
 - We are going to ask Aerospace for clarification on this.
 - It isn't clear if the 10% is additional headroom on top of the margins/reserves LUVOIR is already accounting for or if that is one of the categories that we are already accounting for.

Example of Project vs Aerospace Estimates

Project estimate compared with contractor (Aerospace Corporation) appraisal of program costs for JDEM-Omega, LISA, and IXO. Costs shown are for the full mission, including Phase A, and are in FY2010 dollars.

Examples of S-Curves for Cost Estimates

Program S-curve cost comparison. Costs match those presented in Figure C.3. Project estimates reflect a 10 to 15 percent probability that the project will be completed at that low a cost.