Designing The Next Flagship

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

AAS 234

June 10, 2019

Jonathan Arenberg

Large Mission Milieu

Central Problem of System Design For Science

- To design and execute a system capable of producing worthy (new) science, with constraints
 - Under-defined or improperly defined problem
 - New designs or technology --
 - Complexity
 - Imperfect parts
 - Finite funds
 - Finite time
 - Celestial schedule
 - Graduation (or Retirement)
- Why is the SE job for Flagship systems special?
 - Generally scientific instruments are aimed at doing something new or better than previously achieved
 - "there is no book for this"

Uncertainty is expensive

Big Picture View of SE For Science

- Systems Engineering should be thought of as guidelines
 - Not a hard one size fits all recipe
- This is especially true for large space astronomical systems
 - For new systems there is no book

Systems Engineering is both Science and Art

The Design "Process"

- Know and understand the customer's objective
- Ask the design question in a way it can be answered
- Determine ALL possible solutions
- Select the best option
- Understand how the design works
- Execute the design (fill in all the details)
- Build, test, deliver
- Dispose

Design is more than technology

Know and understand the customer's objective

• What is the objective?

Concentrate on what NOT how

• Who is (are) the customer(s)?

Ask the design question in a way it can be answered

- Asking the correct question is fundamental to getting the right answer
- Learn how to speak customer and system
 - Corollary- Scientists need to learn to speak engineer and manager

Determine ALL possible conceptual solutions

- Think through the problem and determine as many ways to solve as possible
 - Imagination lives here
- Don't reduce the field (yet)
 Flexibility is key
- Study the various options in preparation of selection
 - Evaluate along the customer and solution provider needs
 - How do technology, design and operations interact?

Avoiding a failure of imagination is key to successful design

Select the "best" option

- What is best for this customer(s)
 - Do they all want the same thing?
 - What if they don't?
- Use a rational process for evaluation
 - Have an objective function
 - Cost, schedule, performance, risk
 - Understand them quantitatively
- Recognize the <u>Big Fundamental Problem</u>, aka the sine qua non of the solution

- One BFP is ok, more than one is not good

Do not believe in miracles, but you can bet on on ONE

- Technology development to address BFP

Understand how the design works

- Knowing how the selected design work, enables you to know how it fails
- Make a model of the system and keep it current
 - Model is used to predict performance
 - Train intuition
- Have a performance (error) budget(s)
 - Understand and be able to explain allocations of tolerance
 - Requirements flow down
 - Reserves
- Understand the interfaces
 - This is usually where problems occur
- How will the design be verified?

The purpose of design is the mitigation of failure 10

Execute the design (fill in all the details)

- Expect to learn and update performance models
- Have adequate reserves
 - Performance, cost and schedule
- "If the design is wrong, change it."
 - Be able to explain why the change is necessary
 - The design WILL evolve (change)

Let's Turn the Battleship to a Sustainable Future

Thank you.