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Cooperative Agreement Technical Objectives

• Task 1: System-level architecture and performance predication of a non-contact vibration isolation 

system 

– Assessment of architecture support for observatory line-of-sight agility requirements

– Integrated control/structure/optics modeling of a reference LUVOIR architecture with a non-contact interface, and 

frequency-domain prediction of LOS stability performance in the presence of spacecraft disturbances

– Documents and engineering details to support non-contact isolation system integration into architecture baseline 

(Master Equipment List, system-level block diagrams, performance models, contribution to Conops)

• Task 2: Instrument-Level AI&T Planning support

– Develop I&T plans and schedules for the LUVOIR Instruments:

o Extreme Coronagraph for Living Planetary Systems (ECLIPS)

o LUVOIR Ultraviolet Multi-Object Spectrograph (LUMOS)

– Outline instrument-level activities up to delivery to “OTIS” integration

o OTIS = Optical Telescope Element + Instruments
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Key System-Level Requirements Relevant to Telescope LOS 
Pointing and Isolation – LUVOIR Architecture A

Specification Req. Value

Dynamic wavefront
error stability

Driven by coronagraph 
high-contrast 
requirements: ≤ 40 pm 
(TBR) RMS WFE over 
~10 minutes

Telescope pointing 
stability (@ OTE focal 
plane)

< 0.3 mas 1σ over an 
observation

Object tracking ≤ 60 mas/sec, object 
space

Slew rate Repoint anywhere in 
anti-sun hemisphere in 
45 minutes (Goal: 30 
minutes)

Images Courtesy NASA GSFC
(LUVOIR Interim Report Draft)
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Overview of a Canonical Non-Contact Pointing 
and Vibration Isolation System

• Non-contact vibration isolation technologies, like Lockheed Martin’s 
Disturbance Free Payload (DFP), is an entirely novel concept for 
isolation of a sensitive science payload from the supporting spacecraft 
mechanisms
– A DFP-configured spacecraft is actually two spacecraft flying in close 

formation

• The payload controls the telescope Line-of-Sight by pushing against the 
spacecraft inertia using a set of six non-contact Lorentz force actuators

• The spacecraft controls its inertial attitude such that interface stroke 
and gap are maintained
– Requirements for spacecraft attitude control are no more 

stringent than those for conventional spacecraft, and do not derive from 
payload pointing requirements

• Payload Line-of-Sight isolation from Spacecraft disturbances
is broadband, even down to low frequency, and is not 
affected by interface sensor measurement noise
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Principal Signal Architecture: Steady-State Observatory 
Observation
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Principal Signal Architecture: Observatory Repointing and 
Slewing
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Alternate Signal Architecture: Observatory Repointing and 
Slewing
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Nonlinear, Rigid-Body Simulation Results: LUVOIR 
repositioning with a non-contact interface

Initial Angular 
Condition 

Final Angular 
Condition 

Spacecraft 0" around sun 
pointing axis (x axis) 

180" around sun 
pointing axis (x axis)

Gimbal 90" 0"

• Lockheed Martin’s 10 mm VCA design 
can achieve the peak force and 
gap/stroke demands: 
– Max. VCA Force: 16.9 N 
– Max. Axial Gap: 1.24 mm
– Max. Radial Gap: 1.24 mm
– Max. Current: 3.08 A (per actuator)
– Max. Power: 31.9 W 

(per actuator) Nonlinear dynamics simulations of multiple repositioning profiles shows that the 
non-contact interface can be maintained within gap and NCA force limits

Simulation 
animations available
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Integrated Structure/Controls/Optics Modeling: an Early 
LUVOIR Architecture A Finite Element Model 

• Structural dynamics model was extracted from a single 
FEM with two disconnected spacecraft and payload bodies

• Number of modes: 4373
• Model restrictions: monolithic PM, only LOS output from 

linear optical sensitivities (no WFE output)
Pa

yl
oa

d
Sp

ac
ec

ra
ft

Translation/Force @ IF Node Rotation/Torque @ IF Node

Early efforts of integrated controls/structure/optics modeling has yielded insights into LUVOIR 
dynamics and sharpened the process of further model integration activities
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Example closed-loop frequency-response results: steady-
state science observation

• Spacecraft/payload interface transmissibility obtained

• Structural resonances in spacecraft or payload can have 
a significant effect on transmissibility

• Transmissibility is not a direct measure of system optical 
stability

• Initial simplified analysis of LOS error amplitude over 
a range of possible CMG rotor speeds:
– assuming static and dynamic imbalance of the CMGs

– Total LOS output was computed under two assumptions: 
(a) all 4 CMG imbalances are in phase (sum); (b) all 4 
CMG imbalances have random phase (RMS)

• Forward work: consider CMG disturbance harmonics 
and contribution over all CMG gimbal angles
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I&T Concept Planning for Estimating

Establish sequence and timelines
• Establish nominal integration flow to assemble and perform baseline test at 

temperature and pressure efficiently.  Validate predicts.
• Establish assembly sequences to reference, course align and fine align optical 

train.  Design in reference fiducials for alignment efficiencies.
• Plan for surrogates, with capability for component remove/replace within 

spatial alignment.
• Once comprehensive baseline is established, execute environmental test 

program, using Limited Performance Tests throughout to track health, 
alignment and trending data.

LUMOS and ECLIPS Test
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I&T Facilities Considerations for planning

Facilities
Establish facilities required to Handle, Integrate, Test and Deliver two Large Optical Payload 
Assemblies.  Desire to have best co-location to minimize transport and handling risk.
• LUMOS – Approximately 3.5 m (11.4 ft) x 4.3 m (14.2 ft)
• ECLIPS – Approximately 1.5 m (5 ft) x 2 m (6 ft)

Integration Space Considerations
• Sufficient clean rooms with optical bench space capable of supporting sizes indicated
• Adjacent space to support optical test bed for alignments, optical train buildup and phase retrieval
• Handling/Crane Considerations, Logistical support considerations (precision clean, optics stores, etc)

Environmental Test Considerations
• TVac:  Chamber large enough to accommodate LN shrouds, Helium Cyro Shrouds and Payloads.
• TVac:  Chamber incorporates large enough optical window and adjacent floor space for external optical 

test bed sources, compound motion beam walking and other potential optical metrology.
• EMI:   Anechoic Chamber large enough to accommodate, appropriate noise floor and cleanliness level.
• Vibe:  Shaker system to meet size/mass and modal requirements of each system

LUMOS

ECLIPSE



System-Level Segmented Telescope Design
PI: Larry D. Dewell/Lockheed Martin

Objectives and Key Challenges:
• Address the system-level design challenges of large, UV/IR space telescopes to 

achieving picometer-level wavefront stability to support coronography-based 
science

• Develop new testbeds to anchor picometer-class integrated models
• Inform NASA technology development plans to support large telescope missions 

in the 2020 Decadal Survey

Significance of Work:
• Establish, through analysis and anchoring testbeds, engineering confidence in 

the feasibility of picometer stability for large telescopes

Approach:
• Develop integrated telescope models to predict quasi-static and dynamic 

wavefront error performance from STDT initial models
• Anchor models and mature technology through testing under internal R&D 

funding
Key Collaborators:
• Ray Bell and Alison Nordt – Lockheed Martin Advanced Technology Center
• Jay Daniel – Coherent Inc.
• Jeffrey Klingzahn – Harris Corp.
• Bari Southard – United Technologies Aerospace Systems (UTAS)

Current Funded Period of Performance:
• April 2018 – April 2019

Recent Accomplishments:
ü Notification of award: March 16, 2018
ü Kickoff meeting: April 17, 2018

Application:
• Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor, Habitable Exoplanet Imaging 

Mission (HabEx), Origins Space Telescope (OST)

Next Milestones:
• Baseline architecture performance complete, and mid-term review: September 2018
• Technology development plan: December 2018
• Final report: April 2019

Segmented Telescope Modeling, Anchored by Test
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Cooperative Agreement Progress Report Summary

• Key Program Points

– Period of Performance has been extended at no cost to NASA to 7/31/2018

– Final report will summarize results of integrated modeling exercise, and Instrument AI&T plans

• Key takeaways:

– Through analysis, modeling and simulation, the CAN activity has shown that a non-contact payload/spacecraft 

isolation system is feasible for LUVOIR, meets the necessary agility requirements, and suggests excellent pointing 

and vibration isolation benefits to the architecture

– The CAN pointing and isolation integrated modeling has provided an early exercise in this integrated modeling 

approach which will be more further refined and exercised in the System-Level Segmented Telescope Design 

(SLSTD) follow-on efforts

– Requirements for LUVOIR Instrument Assembly, Integration and Test (AI&T) have been reviewed, a initial 

conceptual work flow concept is established, and further planning efforts are underway to support the CAN Final 

Report


