Lockheed Martin Business Areas

Aeronautics
- Tactical Fighters
- Tactical /Strategic Airlift
- Advanced Development
- Sustainment Operations

Missiles and Fire Control
- Air and Missile Defense
- Tactical Missiles
- Fire Control
- Combat Maneuver Systems
- Energy

Rotary and Mission Systems
- Naval Combat Systems
- Radar and Surveillance Systems
- Aviation Systems
- Training and Logistics Solutions
- DOD Cyber Security

Space Systems
- Surveillance and Navigation
- Global Communications
- Human Space Flight
- Strategic and Defensive Systems
- Strategic / Operational Command & Control Systems
Advanced Technology Center (ATC)

- SSC’s R&D Laboratory; ~500 Scientists and Technologist – 2/3<sup>rd</sup> with Advanced Degrees
- Technology Invention & Innovation
- Contracted and Independent R&D
- Payloads and Payload Technologies
- Space and Earth Science
- Classified Advanced Development
- Key Partnerships: Engineering, Universities, and Other R&D Institutions

Creating the Generation After Next
Payload Centers of Excellence

The RF Payload Center of Excellence, is shaping the future of space-based RF and Communications payloads.

- This center combines a proven, integrated team with new talent and facilities – collocating design, manufacturing and testing of all types of RF systems, products and antennas.

The Optical Payload Center of Excellence, is defining the future of imaging in Space.

- A network of experts and facilities headquartered Palo Alto, California, the Center of Excellence is focused on advancing Lockheed Martin capability, efficiency and agility in optical technologies and products.
World Class Facilities

Core infrastructure in place to execute space-based missions

Advanced Simulation
Environmental Tests
Virtual Design & Production

Clean Rooms
Payload Development
Manufacturing/Assembly
Satellite Integration

Decades of Industry and Government Investment
Lockheed Martin Cryocoolers

- Lockheed Martin ATC Thermal & Energy Sciences has over 40 years experience in Space Cryogenics
  - 45 years in Space Cryogenic Dewars and Cryostats (WISE, GP-B)
  - 20 years in Mechanical Cryocoolers
- Industry leader in simple, robust space cryocoolers for cooling below 10 K
- Lockheed Martin has a well-defined path forward to demonstrate required OST cooling with a simple pulse tube cryocooler
The Case for Non-Contact Payload Isolation

- The need for high payload dynamic stability is an overarching technology need to ensure the performance of future large optical systems
  - The large 8-15 meter OST Primary Mirror will require very low levels of mechanical vibration to meet its wavefront error stability requirements and 40 mas rms jitter requirement

- Previous passive architectures will be hard-pressed to achieve the dynamic WFE stability requirements of systems like OST
  - Passive isolation disturbances is limited at low frequency, and complicated by internal structural resonances of the isolation system itself
  - Active cancellation of LOS error arising from disturbances has sensing, mechanism and control challenges

- Lockheed Martin has developed and tested a Disturbance Free Payload (DFP) technology, that fundamentally separates the optical telescope from spacecraft disturbances

<table>
<thead>
<tr>
<th>Traditional Dynamic Stability Approaches</th>
<th>Drawbacks for OST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple stages of passive isolation</td>
<td>Internal resonances compromise performance at high frequency, and are difficult to predict</td>
</tr>
<tr>
<td>Resonant frequency avoidance</td>
<td>Impacts system availability and complicates Conops</td>
</tr>
<tr>
<td>Active telescope vibration sensing and cancellation</td>
<td>Complex telescope instrumentation; complex system design; performance limited by sensor noise</td>
</tr>
</tbody>
</table>

A Disturbance-Free, Non-Contact Architecture

- The DFP isolation system is an entirely novel and revolutionary concept for isolation of a sensitive science payload from the supporting spacecraft mechanisms
  - A DFP-configured spacecraft is actually two spacecraft flying in close formation
- The spacecraft measures and controls its attitude using star trackers and reaction wheels’
  - Requirements for control are no more stringent than those for conventional communications satellites
- The payload controls its attitude by pushing against the spacecraft using a set of six non-contact linear-motion, electromechanical Lorentz force actuators
Enabling Missions of Today and Tomorrow through Innovation