

Advanced Technology Center Overview

OST Face-to-Face

**Greg Feller** Advanced Technology Center Lockheed Martin Space Systems Company

1

LOCKHEED MARTIN

### Lockheed Martin Business Areas



#### Aeronautics

- Tactical Fighters
- Tactical /Strategic Airlift
- Advanced Development
- Sustainment Operations



#### Missiles and Fire Control

- Air and Missile Defense
- Tactical Missiles
- Fire Control
- Combat Maneuver Systems
- Energy



#### Rotary and Mission Systems

- Naval Combat Systems
- Radar and Surveillance Systems
- Aviation Systems
- Training and Logistics Solutions
- DOD Cyber Security



#### Space Systems

- Surveillance and Navigation
- Global Communications
- Human Space Flight
- Strategic and Defensive Systems
- Strategic / Operational Command & Control Systems

### Space Systems Company Portfolio

#### Strategic & Missile Defense





Adv Programs

Strategic Missiles **Missile Defense** 

**Military Space** 

Navigation



NASA Human Exploration

#### **Civil Space**



Planetary Exploration



Weather & Environment

#### Special Programs



#### **Mission Solutions**



Protected

Comms





Narrowband

Comms





Weather



Warning



Mission Systems



Geospatial Technologies

### **Commercial Space**



Remote Sensing



Commercial SATCOM



Management



Optics, RF & Photonics



Adv. Materials & Nano Systems



Space Sciences & Instruments

#### **Subsidiaries**



### Advanced Technology Center



Early

Space Protection



### Advanced Technology Center (ATC)

- SSC's R&D Laboratory; ~500 Scientists and Technologist – 2/3<sup>rd</sup> with Advanced Degrees
- Technology Invention & Innovation
- Contracted and Independent R&D
- Payloads and Payload Technologies
- Space and Earth Science
- Classified Advanced Development
- Key Partnerships: Engineering, Universities, and Other R&D Institutions



### **Creating the Generation After Next**

# Payload Centers of Excellence

### REPAYLOAD

# The RF Payload Center of Excellence, is shaping the future of space-based RF and Communications payloads.

 This center combines a proven, integrated team with new talent and facilities – collocating design, manufacturing and testing of all types of RF systems, products and antennas



# The Optical Payload Center of Excellence, is defining the future of imaging in Space

 A network of experts and facilities headquartered Palo Alto, California the Center of Excellence is focused on advancing Lockheed Martin capability, efficiency and agility in optical technologies and products





### World Class Facilities

### Core infrastructure in place to execute space-based missions



Advanced Simulation



**Environmental Tests** 



Virtual Design & Production



Clean Rooms



Payload Development



Manufacturing/ Assembly



Satellite Integration

**Decades of Industry and Government Investment** 

# Lockheed Martin Cryocoolers

- Lockheed Martin ATC Thermal & Energy Sciences has over 40 years experience in Space Cryogenics
  - 45 years in Space Cryogenic
    Dewars and Cryostats (WISE, GP-B)
  - 20 years in Mechanical Cryocoolers
- Industry leader in simple, robust space cryocoolers for cooling below 10 K
- Lockheed Martin has a well-defined path forward to demonstrate required OST cooling with a simple pulse tube cryocooler





### The Case for Non-Contact Payload Isolation

- The need for high payload dynamic stability is an overarching technology need to ensure the performance of future large optical systems
  - The large 8-15 meter OST Primary Mirror will require very low levels of mechanical vibration to meet its wavefront error stability requirements and 40 mas rms jitter requirement
- Previous passive architectures will be hard-pressed to achieve the dynamic WFE stability requirements of systems like OST
  - Passive isolation disturbances is limited at low frequency, and complicated by internal structural resonances of the isolation system itself
  - Active cancellation of LOS error arising from disturbances has sensing, mechanism and control challenges
- Lockheed Martin has developed and tested a Disturbance Free Payload (DFP) technology, that fundamentally separates the optical telescope from spacecraft disturbances

| Traditional Dynamic<br>Stability Approaches | Drawbacks for OST           |
|---------------------------------------------|-----------------------------|
| Multiple stages of                          | Internal resonances         |
| passive isolation                           | compromise performance at   |
|                                             | high frequency, and are     |
|                                             | difficult to predict        |
|                                             |                             |
| <b>Resonant frequency</b>                   | Impacts system availability |
| avoidance                                   | and complicates Conops      |
|                                             |                             |
| Active telescope                            | Complex telescope           |
| vibration sensing and                       | instrumentation; complex    |
| cancellation                                | system design; performance  |
|                                             | limited by sensor noise     |
|                                             |                             |

Pedreiro, N., "Spacecraft architecture for disturbance-free payload", US Patent 6,454,215 (2002).

## A Disturbance-Free, Non-Contact Architecture

- The DFP isolation system is an entirely novel and revolutionary concept for isolation of a sensitive science payload from the supporting spacecraft mechanisms
  - A DFP-configured spacecraft is actually two spacecraft flying in close formation
- The spacecraft measures and controls its attitude using star trackers and reaction wheels'
  - Requirements for control are no more stringent than those for conventional communications satellites
- The payload controls its attitude by pushing against the spacecraft using a set of six non-contact linear-motion, electromechanical Lorentz force actuators



## **ATC Portfolio of Technical Discriminators**







Phenomenology & Sensors Technology

**Enabling Missions of Today and** 

**Tomorrow through Innovation** 



Optics & Electro-Optics



Laser Radar

![](_page_9_Picture_9.jpeg)

Advanced Materials & Nanosystems

![](_page_9_Picture_11.jpeg)

Thermal & Energy Sciences

![](_page_9_Picture_13.jpeg)

Control Systems & Information Sciences

![](_page_9_Picture_15.jpeg)

**RF & Photonics** 

![](_page_10_Picture_0.jpeg)