POSSIBLE
JPL CONCEPT STUDY
FOR OST STDT

C. R. LAWRENCE, A. SENGUPTA, JOHN STEEVES
JPL

OST f2f #5
2017 Jun 14
Overview

• JPL is enthusiastic about studying Concept #2

• Direction must come from the STDT

• What can we do that is the most useful?
 – Possible answer: cover a different range of possibilities than Concept #1

• Suggestion:
 – Design to cost
 Focus on active telescope architecture (including the simplification in ground testing that it promises)
 – Focus on architecture and science traceability, not a point design for observatory or instruments
 Not a short Team-X study, but fewer people over longer time. Team X later.
 – Need cost reasonableness (upper limit and uncertainty) guide the work
Active Mirror Technology

Actuated Hybrid Mirrors (AHMs) demonstrate active mirror architecture

- **Lightweight SiC substrates**
 - 0.5 – 1.35m demonstrated
- **Distributed surface-parallel actuation**
 - 37 – 414 actuators demonstrated
- **Replicated nanolaminate front surface**

Unwin, S., et. al. (2010)
Active Mirror Technology

- **Figure control performance:**
 - <14 nm rms SFE demonstrated
 - High correctability over low-order modes
 - Tested in 1G to 0G specs
- **Areal density:**
 - 10-15 kg/m² substrate
 - < 25 kg/m² total

J. Wellman, G Weaver, D. Redding (2012), AAS Meeting 219-136.06
Cryogenic Active Mirrors

- Cryogenic Active Mirror (CAM) Activity:
 - Demonstrated cryo functionality via small-scale demonstrator mirror

- Necessary to demonstrate:
 - Direct-polish of SiC or Si-clad surface
 - Diffraction-limited performance at 293K and 4K
 - Eliminate cryo-null figuring
 - Athermalized actuator interfaces to minimize thermal distortions
 - Low dissipation actuators

Path forward: NASA SAT proposal; JPL Next proposal
Telescope Technology Plan — I

- Core technologies demonstrated at room temperature, nanolaminate surface
 - Lightweight SiC mirror segments
 - Parallel-to-surface actuators in ribs of substrate
 - Laser metrology for rigid-body positioning of segments
 - Wavefront sensing for segment shape
 - Achieved 15 nm rms surface error (= 30 nm rms wavefront) in best segment
- Actuation and control demonstrated at 26 K on 15-cm mirror
- To be done:
 - (For short wavelengths: demonstrate Si cladding for surface, rather than nanolaminate)
 - Demonstrate performance of a ~1.3 m segment over 270 to 4 K temperature range
 - Zero-power-dissipation actuation at 4 K
 - Demonstrate/design appropriate methods for building large mirrors from segments
 - System engineering study of integration and testing required
 - Including establishing that system-level cryo testing can be eliminated
Telescope Technology Plan — II

• Means
 - “JPL Next” program. Decision in ~1 month, but contract with AOA Xinetics is being set up
 - NASA SAT. Decision in \(n \) months?
 - System engineering study by people from many institutions
 Led by Jon Arenberg of NGC

• Schedule
 - Work needs to be done in time for inclusion in STDT design concept reports
 - Depends on funding. We’re optimistic…