

Origins Space Telescope (OST) Mission Concept 1 Open Issues

Face-to-Face #5 June 1-2, 2017

Ruth.C.Carter@nasa.gov

Concept 1 Design Status/Issues

- Concept 1 mass is ~2,000 kg over the launch vehicle (Vulcan Aces 5m fairing) lift capability
 - Mass for 5 instruments is 2643 kg
 - Far-IR Imager/Polarimeter (FIP): 781 kg
 - High Resolution Spectrometer (HRS): 935 kg
 - Medium Resolution Survey Spectrometer (MRSS): 435 kg
 - Heterodyne Instrument (HI): 383 kg
 - Mid-IR Spectrometer/Imager/Coronagraph (MISC): 108 kg
- Optical ray traces for instruments are still in progress and some are near completion
 - Elimination of any of these instruments will result in rework of ray traces and packaging for remaining instruments
- Fairing volume is extremely tight and uncertain, overall packaging is uncertain and deployment is still TBD
- Current Concept 1 is too heavy to be launched on a 5m fairing
 - Volume is tight and uncertain

- NASA Space Launch System (SLS) has larger mass and volume capabilities to accommodate current OST Concept 1
 - Fairing Sizes: 8.4 x 19 m, 10 m x 31 m
- SLS will be available in 2030's when OST will be ready to launch
 - Both LUVOIR and HabEx mission concepts include SLS
- SLS is a development program and it is yet to have a first launch
 - Higher risk item in mission development
- Larger LV cost will be higher, however larger volume may allow flight system design to be less complex, resulting in lower mission cost overall

- Plan to work with instrument teams to scale down instrument volume, mass and power to fit into a 5 meter fairing
- In the event that the scaled down instruments results in exceeding 5m fairing capabilities, we need design flexibility to assume a larger LV
 - In order to complete Concept 1 design by 9/30/17, we need design flexibility
- Study Office requests STDT permission to go to a larger launch vehicle, <u>if necessary</u>
 - Need a decision by 6/15/2017, 5pm

Study Schedule

						CY 20	017				CY 2018							CY 2019									
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar
Milestone F2F Meetings	C Releas	AN ed:1/26	f2f #4 3/21-22	Partner On-Boar	rd	f2f #5 6/TBD	strumen f Mtgs (6	t I/F /13)	Prel	im Mission esign ITR 10/18	f2f #6		AAS		f2f #7			f2f #8	Mission ITR,	Design CR			f2f #9				
Study Deliverables NASA HQ ApD					TRL Ass Repo	essment r to HQ	Update (6/30)				inte to	rim Report HQ (12/5)					TRL As Repo	sessment U rt to HQ (6	pdate /30)						Final Rep to HQ	ort Pre to Co	OST sentation Decadal mmittee
Science	Prepa	Science I re/draft Detern	Definition, interim re nine Sci Casi	Science r eport for s	equirment ubmittal t graph (MISÇ)	ts, mini a HQ, D	mum sci evelop s	ence, scie cience ca	ence case ses for ir	s iterim rep	oort Scie for I	nce cases nterim Rp		Ad Finalize	ldress IA Science F	M Comme Requirmer	ents, CR o nts, Scice	omment nce Case	s, Final re s, Scienc	eport dra e Instrun	ft and re nent ope	view ration sce	enarios				
Technology	Deca	dal Miss TR	ssion Enat	oling Techr ments	ology _{TRL}	Assessme date Pre	nt Up	odate Mi	sssion En Ro	abling Te admap fo	chnology or techno	Addre TRL Asses	ss ITR Co sments, D ancemen	omments evelop T t	echnolog	Draft T Y 1	echnolog IRL Assessm Prep &	y Roadm ent Update review	ap, estin	nate cost	for tech	nology er	hanceme	nt			
Med-Resolution Survey Specctrogarph (MRRS)	Define Instr	optical ument d prep	reqrm'ts lef., reqr,'i p for IAM	ts, interfac	ces, MRRS	/F f2f I	Vitg Up	date inst	rument,	requirem	ents, de	Address I [*] sign, inter	R Comm face defi	ents nitions I	Input to AM IDL #2	instrume	ent cost e	estimates ooundary	review, condition	final revi n, opera	iew of ins tion scen	strument arios	req. criter	ia,			
Far-IR Imager/Polarimeter (FIP)	Define Instrum interfa	optical ient def ces, prej	reqrm'ts ., reqr,'ts, p for IDL	FIP IDL (4	/17-21)	Upda	te instru	ment, re	Addı quiremen	ess ITR C ts, desig	omment n, interfa	s, enablir ice definit	g techno ions	logies I/	Input to AM IDL #2	instrum	nent cost	estimate boundar	s review conditio	, final rev on, opera	view of in ation sce	nstrument narios	req. crite	ria,			
High-Resolution Sepectrograph (HRS)	Define	optical trument	reqrm'ts : def., req	HRS ID	PL (5/1-5)	U	pdate ins	strument,	requirer	nents, de	Adc esign, inte	dress ITR (erface de	omment finitions	s	Input to	instrume	ent cost e	estimates ooundary	review, condition	final revi n, opera	iew of ins tion scen	strument arios	req. criter	ia,			
Heterodyne Instrument (HI)	Define	optical ro Instru	eqrm'ts ument def	., reqr,'ts,	HT I/F	f2f Mtg	, Up	date insti	rument, i	equireme	Addr ents, des	ess ITR Co sign, inter	omments face defi	nitions I	input to	nstrumen	t cost es bo	timates ro undary co	eview, fir ondition,	nal reviev operatio	w of instr on scenar	ument re ios	q. criteria				
Mid-IR Imager Spectrometer (MISC)	Define o Instr	optical re ument de	eqrm'ts ef., reqr,'ts, for IAM IE	interfaces,	prep MISC	/F f2f I	Vitg Up	date instr	ument, r	equireme	Addres ents, des	ss ITR Cor ign, inter	nments ace defii	nitions	Input to	instrum	ent cost	estimate: boundary	conditio	final rev n, opera	iew of in ation scer	strument narios	req. crite	ria,			
Instrument Accommodation Module (IAM)	Defi config	ne inst uration	srument , instrum	interface Tent place	s, criteria ments in I	AM	M #1 (7/1	UI	odate IAI	∕I design	concept,	Address ceriteria,	ITR Com interface	ments s,		(3/TBD)	IAM c	ost estim con	ates revi	ew, final strument	review o	f interface allocation	es, bound 15	ary			
Telescope System	'Strawr Telesco	nan' Tele pe type (escope de def., reqr,	sign, ape 'ts, interfa	rture size ices, prep	s for Tele	Telescor	DL #1 (8 /14-18) date Teles	copse des	igns, requ	iirements,	Addres: nterfaces	ITR Con	T nments r Telescop	e IDL #2	IDL #2 (4/	TBD) Te bo	lescope o oundary o	cost estir	nates rev , deployi	riew, inte ment sch	faces, emes,				
Mission Defintion, Design, & Development	Defin 2 Mis pre	e missi sion Con p for ME	on requi icepts, mi DL, Develo	rements, ssion dura op end-to-i	minimur Ition, LV s end (ETE)	n succe electior nission	ess crite ns, ConO schedule	ria, <mark>M</mark> ps, ^e Pr	DL #1 (9/	1 <mark>8-22)</mark> on design	Missi for In for Inte	ion Design Iterim Rpt rrim Rpt	Addre Missi	ess ITR C on costin pre	omments Ig, Prep f Pp for CR	or MDL#	MDL #2 (2, Addre	5/TBD) Re ess CR col	efine ETE mments,	mission adjust m	schedule nission co	and cost st, prepa	re final re	Draft Final Review port	Rpt &		

Back - Up

- 9 meter diameter primary mirror
 - Segmented, Off-Axis Telescope
- 5 science instruments
 - Far-IR Imager/Polarimeter (FIP)
 - High Resolution Spectrometer (HRS)
 - Medium Resolution Survey Spectrometer (MRSS)
 - Heterodyne Instrument (HI)
 - Mid-IR Spectrometer/Imager/Coronagraph (MISC)
- Instrument Accommodation Module (IAM)
- 8 cryo-coolers to cool and maintain Telescope and IAM at 4 Kelvin
- Launch on a 5 meter fairing launch vehicle
 - Vulcan Aces assumed
- Mission Operations Orbit is Sun Earth L2

- 1. Mass exceeds allowable.
- 2. Stowing and deploying Sunshade and Baffle:
 - Might be enough space to do it in current configuration TBD. Stowed stack-up only allows for .75m in height for stowing Sunshade.
 - Engineer, with in-depth knowledge of JWST Sunshade design, is just starting to look at it.
 - Cable harnesses and cryo lines (volume TBD) need to stow in same area as Sun Shade. May not be enough room for it all.
 - How to deploy the cable harnesses and cryo lines AND the Sunshade when they all stow in same location may be unworkable.
 - May not be enough room in bus to store everything. Many deployment booms are needed for Sunshade. Large prop tank takes up a lot of room, as well. Layout of Bus is TBD.
- 3. Currently HRS instrument interferes with lower corner of stowed Primary Mirror
 - Packaging of HRS might not allow for removal of interference TBD.
 - Removing one hex segment of PM required if HRS interference remains.
- 4. CG if stowed assembly will be rather high. High CG and high mass may preclude using this launch vehicle.

Bus Volume

Area of sunshade = TBD

Area of red triangle =1/2[(142-57)/2]^2 = 903 in^2

Area of DTA = Pi x D^2/4 = Pi x 40 in^2/4 = 1256 in^2

Area of bus top shape without DTA area = $142^2 - 4(903'') - 1256 =$ $20,164 \text{ in}^2 - 3,612 \text{ in}^2 - 1256$ $\text{in}^2 = 15,296 \text{ in}^2 (9.8\text{m}^2)$

Volume available for sunshade stowage and cable harnesses and cryo lines = 9.8 m² x .75 m = 7.35 m³

Concept 1 Mass Estimates

preliminary and immature

ltem	Mass Estimate (kg)	Comments						
Instruments (Total of 5)	2,370	Initial allocation total of ~825 or ~165 kgs per instument						
FIR Imager/Polarimeter (FIP)	508	Initial IDL mass estimate with OST Team Modifications						
Hetrodyne Instrument (HI)	383	Martina's Rough Estimate						
High Resolution Spectrometer (HRS)	936	Initial IDL's mass estimate						
Medium Resolution Survey Spectrometer (MRSS)	435	Initial Rough Estimate provided by JPL						
MID-IR Imager Spectrometer Coronograpgh (MISC)	108	Initial estimate from Itsuki Sakon, March 2017 F2F meeting						
		Assumes 40 kgs/m ² , unknown if possible, dependant on material selected and needed OTE						
Optical Telescope Element (OTE)	2,594	structural frequency. The JWST figure is ~68 kgs/m ² all inclusive (see OTE Tab).						
Cryocoolers (8 @ 66 kgs each)	528	Mike Dipirro's Mass Estimate						
20 K Box		TBD, ~10's of kilograms, relatively small						
Sunshield	1,000	Rajeev Sharma's mass estimate (Drew Jones' initial rough estimate was 1,861 kgs)						
Baffle Assembly	350	Rajeev Sharma's mass estimate (Drew Jones's initial rough estimate was 223 kgs)						
IAM (Less Instruments)	321	Greg Martin's Rough Estimate						
SC Bus	2,284	Anel & Greg Martin's Rough Estimate						
Deployable Tower Assemby (DTA)	149	Greg Martins Rough Estimate						
Curent Best Estimate (CBE) Dry Mass	9,596							
		Based on a projected ~200 m/s Delta V, Folta and Webster; or ~960 kgs; plus ~400 kgs for						
Propellant/ Pressurant	1,360	momentum unloading, Eric Stoneking. Assumes MPV mass of 11, 095 kgs.						
Curent Best Estimate (CBE) Wet Mass	10,956	Ideally ~9,015 kgs or below						
CBE Wet Mass Overweight	1,941							
Contingency (%)	23.1%	Estimated effective contingency needed based on CBE Dry mass only						
Contingency (kgs)	2215	Estimated effective contingency needed based on CBE Dry mass only						
Maxium Expected Value (MEV) Dry Mass	11,810							
Maxium Expected Value (MEV) Wet Mass	13,170	Needs to be below ~11,095 kgs						
MEV Wet Mass overweight	2,075							

Potential Launch Vehicles

	Launch Vehicle	Manufacturer	Country of Origin	Cost per launch	Fairing Size Dia. by Length	Payload to GTO (kg)	Payload to L2 ⁽³⁾	Status	Launch Sites
Active	Falcon 9 Full Thrust (FT) ⁽¹⁾	SpaceX	U.S.A.	\$62 Million	5.2 m x 13.1 m	8,300	3,370 ⁽⁴⁾	FT: Active	Cape Canaveral SLC-40 Kennedy Space Center LC-39A Vandenberg SLC-4E
.S.A./ <i>P</i>	Delta IV Heavy	ULA	U.S.A	\$375 Million (2014)	5 m x 19.1 m	14,220	10,695	Active	SLC-37B, Cape Canaveral SLC-6 Vandenberg AFB
Ď	Atlas V 500 Series	ULA	U.S.A	Not Available	5.4 m x 20.7 m 5.4 m x 23.5 m	4,750 – 8,900	2125 - 6,165	Active	Cape Canaveral SLC-41 Vandenberg AFB SLC-3E
U.S.A./ In development	Falcon Heavy	SpaceX	U.S.A	\$90 Million for up to 8,000 kg to GTO	5.2 m x 13.1 m	(27°) 22,200	Not Available	In development	Kennedy LC-39A Vandenberg AFB SLC-4E
	Space Launch System	Boeing, ULA, Orbital ATK, Aeroject Rocketdyne	U.S.A	\$500 Million	5 m x 19 m 8.4 m x 19 m 10 m x 31 m	Not available	Not Available	In development	LC-39B, Kennedy Space Center
Foreign/ Active	Ariane 5	Airbus Defense and Space	Europe	\$165 - \$220 Million (20 ESA member states)	5.4 m x 17 m	(27°) ECA ⁽²⁾ : 10,500	Not Available	Active	Guiana Space Centre ELA-3, French Guiana
	H-IIB	Mitsubishi Heavy Industries	Japan	Not Available	5.1 m x 15 m	8,000	Not Available	Active	Tanegashima Space Center, Japan

Notes:

1) FT – Full Thrust is the latest version of the Falcon 9; versions v1.1 and v1.0 are retired from service.

2) ECA - The Ariane 5 ECA (*Evolution Cryotechnique type A*), first successfully flown in 2005, uses an improved Vulcain 2 first-stage engine with a longer, more efficient nozzle with a more efficient flow cycle and denser propellant ratio. The Ariane 5 ECA has a GTO launch capacity of 9,100 kg (20,100 lb.) for dual payloads or 9,600 kg (21,200 lb.) for a single payload. ES - the Ariane 5 ES (*Evolution Storable*) has an estimated LEO launch capacity of 21,000 kg (46,000 lb.). Ariane versions A5 G, A5 G+, and A5 GS are retired from service.

3) L2 - Lagrange point 2 named after Joseph Lagrange, an 18^{th} century mathematician, who found the solution to the "three-body problem". In astrodynamics, the characteristic energy (C₃) is a measure of the excess specific energy over that required to just barely escape from a massive body. The units are length²/time², i.e., energy per mass. In this case an initial C₃ estimate of -0.5 km²/sec² to L2 was assumed.

4) Assumes the Drone recovery option for the Falcon 9 FT 1st Stage and launch from SLC-41 at CCAFS.