OST Mission Concept

Dave Leisawitz, NASA Study Scientist
on behalf of the OST mission concept study team
Study approach

- Identify visionary, robust, and compelling science questions
 - Derive from those questions a set of high-priority measurement requirements for the mission
 - Choose a mission architecture
 - Evaluate trades and develop mission point design
 - Determine technology needs
 - Estimate costs (baseline concept and options)
 - Present to Decadal Survey

Iterate concept with STDT
Architecture evolution

Concept 1
- retain high-value science
- constrain cost
- eliminate complex deployments, reduce risk

Concept 2
- reduce size
- optimization

Decadal baseline concept with upscope options
Architecture inspiration

OST Concept 1:
Open architecture

OST Concept 2:
• Better stray light protection
• Can demonstrate shield deployment on the ground

All concepts studied are cryo-cooled ~4 K (no expendable cryogen)
Major Architecture Trades

Telescope size
- JWST collecting area to capture transit spectroscopy from enough exoplanets

Deployed vs. Non-deployed
- Non-deployed optics for simplicity
- SLS (or BFR) required, but viewed as less risky than deployment

On- vs. off-axis
- On-axis for ease of packaging

Size of primary mirror segments
- JWST size, but forming circular aperture
 - 18 segments with only two prescriptions
 - Manufacturing facilities exist
OST Concept 1

- Satisfies nearly all of the science team’s “desirements”
- No cost constraint

9.1 m tip-to-tip hexagonal segmented primary mirror, unobstructed
Concept 1 stowed for launch

- 8.4-m SLS fairing
- 7.5-m fairing ID
- Primary mirror wraps around Instrument Accommodation Module
OST Concept 1

Concept 1 is described in the OST Interim Report

- Available on our website https://asd.gsfc.nasa.gov/firs/docs/ or
Science drivers for OST C2

OST is a mid- and far-IR observatory whose design is driven by community-prioritized science to answer three questions:

1. How common are life-bearing planets orbiting M dwarf stars?
 - Biosignatures in the mid-infrared

2. How do the conditions for habitability develop during the process of planet formation?
 - Follow the trail of water (vapor and ice) from the interstellar medium to nascent planets

3. How do galaxies form stars, grow their central supermassive black holes, and make heavy elements over time?
 - Probe the universe deeply in key diagnostic spectral lines without the adverse effect of dust extinction
Derived requirements

The prioritized scientific objectives for OST require:

• exquisite sensitivity (e.g., 5σ sensitivity to spectral lines at 10^{-20} W m$^{-2}$ in 1 hour);
• spectroscopy with resolving power ranging from 10 to $>10^5$ in approximately order-of-magnitude increments;
• an ability to survey large areas in a reasonable observing time (e.g., a deep extragalactic “Legacy survey” covering 10 deg2 in 1000 hours); and
• superlative stability (<5 ppm) to enable a fruitful search for biosignatures in the spectra of transiting exoplanets.

The prioritized scientific objectives do not require high (sub-arcsecond) angular resolution.

A cold (4.5 K) telescope equipped with next-generation detectors in high pixel count arrays can approach the astronomical background photon noise limit and satisfy the requirements.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>OST Concept 1</th>
<th>OST Concept 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength range (μm)</td>
<td>5 - 660</td>
<td>5 - 588</td>
</tr>
<tr>
<td>Telescope Field of View (arcmin)</td>
<td>25 x 15</td>
<td>40 x 15</td>
</tr>
<tr>
<td>Launch Vehicle/Configuration</td>
<td>SLS with 8.4 m fairing</td>
<td>Compatible with SLS with 8.4 m fairing; Space X BFR with ~9 m fairing; Blue Origins New Glenn with ≥7 m fairing</td>
</tr>
<tr>
<td>Telescope first-order specifications</td>
<td>9.1 m hexagonal, tip-to-tip; segmented; folded when stowed for launch, and deployed in space</td>
<td>5.9 m diameter (circular); no deployment</td>
</tr>
<tr>
<td>Aperture size</td>
<td>52</td>
<td>25</td>
</tr>
<tr>
<td>Collecting area (m²)</td>
<td>f/12.8</td>
<td>f/14.0</td>
</tr>
<tr>
<td>f-number</td>
<td>116</td>
<td>82.6</td>
</tr>
<tr>
<td>Effective Focal Length (m)</td>
<td>Three-mirror anastigmat, unobstructed (off-axis pupil)</td>
<td>Three mirror anastigmat, on-axis pupil, 0.9 m central obstruction</td>
</tr>
<tr>
<td>Design form</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Operating temperature (K)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>Diffraction limited at λ = 30 μm (MISC instrument diffraction limited at 5 μm with deformable mirror)</td>
<td>Diffraction limited at λ = 30 μm (MISC instrument diffraction limited at 5 μm with deformable mirror)</td>
</tr>
<tr>
<td>Pointing requirements</td>
<td>Knowledge: 30 mas (MRSS inertial point); Control: 44 mas; Jitter: 22 mas RMS (at MISC; telescope rqmt TBD)</td>
<td>TBD; approximately the same as Concept 1</td>
</tr>
<tr>
<td>Instrument suite</td>
<td>Mid-Infrared Imager Spectrometer Coronagraph (MISC)</td>
<td>Mid-Infrared Imager Spectrometer Coronagraph (MISC)</td>
</tr>
<tr>
<td></td>
<td>• Wavelength range: 5 - 38 μm</td>
<td>• Wavelength range: 5 - 38 μm</td>
</tr>
<tr>
<td></td>
<td>• Imaging, spectroscopy</td>
<td>• Imaging, spectroscopy</td>
</tr>
<tr>
<td></td>
<td>• Coronagraphy (10⁻⁶ contrast)</td>
<td>• Transit Spectrometer (5 ppm stability, with a goal of 1 ppm, on a timescale of hours to days)</td>
</tr>
<tr>
<td></td>
<td>• Transit Spectrometer (<10 ppm stability on a timescale of hours to days)</td>
<td>• Study partners: JAXA, NASA ARC</td>
</tr>
<tr>
<td></td>
<td>• Study partners: JAXA, NASA ARC</td>
<td>Origins Survey Spectrometer (OSS)</td>
</tr>
<tr>
<td>Instrument suite</td>
<td>Concept 1</td>
<td>Concept 2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| **Mid-Infrared Imager Spectrometer Coronagraph (MISC)** | • Wavelength range: 5 - 38 μm
• Imaging, spectroscopy
• Coronagraphy (10⁶ contrast)
• Transit Spectrometer (<10 ppm stability on a timescale of hours to days)
• Study partners: JAXA, NASA ARC | **Mid-Infrared Imager Spectrometer Coronagraph (MISC)**
• Wavelength range: 5 - 38 μm
• Imaging, spectroscopy
• Transit Spectrometer (5 ppm stability, with a goal of 1 ppm, on a timescale of hours to days)
• Study partners: JAXA, NASA ARC |
| **Medium Resolution Survey Spectrograph (MRSS)** | • Wavelength range: 30 - 560 μm
• Multi-band spectroscopy
• Study partner: JPL | **Origins Survey Spectrometer (OSS)**
• Wavelength range: 25 - 588 μm
• Multi-band slit spectroscopy, with all bands in one slit: ~100 diffraction-limited beams per slit
• FTS mode provides \(R = 43,000 \times (112 \mu \text{m/λ}) \)
• High-resolution mode provides \(R = 325,000 \times (112 \mu \text{m/λ}) \)
• FTS and High-res modes in single diffraction-limited beam
• Study partners: JPL, NASA GSFC |
| **High Resolution Spectrometer (HRS)** | • Wavelength range: 25 - 200 μm
• High-resolution, high-sensitivity spectroscopy
• Study partner: NASA GSFC | |
| **Far-infrared Imager and Polarimeter (FIP)** | • Wavelength bands: 40, 80, 120, 240 μm
• Broadband Imaging
• Field of view 2.5' x 5', 7.5' x 15'
• Differential polarimetric imaging
• Study partner: NASA GSFC | • Wavelength bands: 40, 80, 120, 240 μm
• Broadband imaging
• Field of view 13.5' x 6' @ 240 and 240 μm, 4.5' x 3' @ 40 and 80 μm
• Polarization sensitivity: 0.1% in linear and circular, ±1° in pol. Angle
• Study partner: NASA GSFC |
| **Heterodyne Receiver for OST (HERO)** | • Wavelength bands: 63 - 66, 113 - 641 μm
• Multi-beam high-resolution spectroscopy
• Study partner: European consortium | **Heterodyne Receiver for OST (HERO)**
• Wavelength bands: 617 - 397 μm, 397 - 252 μm, 252 - 168 μm, and 168 - 111 μm
• \(R = 10^3 - 10^5 \) spectroscopy
• Instantaneous FoV: 2.1' x 2.1' @ 480 μm; 1.3' x 1.3' @ 300 μm; 0.8' x 0.8' @ 200 μm, 0.6' x 0.6' @ 130 μm
• Study partner: European consortium |
OST Concept 2 telescope

entliches primary

\(/14.0 \text{ telescope}

Three-mirror (TMA) selected over two-mirror system
• Larger FoV
• Improved imaging performance
• Incorporate Field Steering Mirror

On-axis selected over off-axis
• Easier to package in fairing
• Easier fabrication/testing – more symmetric segments

Circular pupil selected over elliptical or rectangular
• Cleaner/symmetric PSFs
Primary mirror segments

Option 1a: replace Herschel-sized (3.5m) monolith with six segments. 12 segments in outer ring.

Option 2a: Hubble-sized (2.4m) monolith surrounded by a ring of six segments.
Only need to adjust piston, tip and tilt.
OST Concept 2 error budget

Shows how we take advantage of the relaxed WFE tolerance.

- No cryo-null figuring

Deepen Budget as architecture matures
- Includes alignment of telescope optics and instruments
- low, mid, high allocations
- Break out thermal and dynamic terms
- Focus allocation

<table>
<thead>
<tr>
<th>Telescope</th>
<th>FIRS Instrument</th>
<th>HERO</th>
<th>MSSC Instrument</th>
<th>OSS Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSWE, for Strehl</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>at wavelength (μm)</td>
<td>40.0</td>
<td>63.0</td>
<td>5.0</td>
<td>35.0</td>
</tr>
<tr>
<td>rms Req tot (nm)</td>
<td>3007</td>
<td>4736</td>
<td>376</td>
<td>2631</td>
</tr>
<tr>
<td>RMSWE, for Strehl</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>at wavelength (μm)</td>
<td>40.0</td>
<td>63.0</td>
<td>5.0</td>
<td>35.0</td>
</tr>
<tr>
<td>rms Req tot (nm)</td>
<td>3007</td>
<td>4736</td>
<td>376</td>
<td>2631</td>
</tr>
<tr>
<td>Req</td>
<td>2255</td>
<td>1370</td>
<td>3886</td>
<td>1355</td>
</tr>
</tbody>
</table>

Reallocatable to telescope or keep as system margin

<table>
<thead>
<tr>
<th>Minimum Reserve</th>
<th>Reserve</th>
<th>Residual</th>
<th>Reserve</th>
<th>Residual</th>
<th>Reserve</th>
<th>Residual</th>
<th>Reserve</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Req</td>
<td>0</td>
<td>2255</td>
<td>2255</td>
<td>1370</td>
<td>1370</td>
<td>3886</td>
<td>3886</td>
<td>1355</td>
</tr>
</tbody>
</table>

Reserve be Telescope or keep as system margin

<table>
<thead>
<tr>
<th>Telescope</th>
<th>FIRS System</th>
<th>HERO System</th>
<th>MSSC System</th>
<th>OSS System</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSWE, for Strehl</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>at wavelength (μm)</td>
<td>40.0</td>
<td>63.0</td>
<td>5.0</td>
<td>35.0</td>
</tr>
<tr>
<td>rms Req tot (nm)</td>
<td>3007</td>
<td>4736</td>
<td>376</td>
<td>2631</td>
</tr>
<tr>
<td>RMSWE, for Strehl</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>at wavelength (μm)</td>
<td>40.0</td>
<td>63.0</td>
<td>5.0</td>
<td>35.0</td>
</tr>
<tr>
<td>rms Req tot (nm)</td>
<td>3007</td>
<td>4736</td>
<td>376</td>
<td>2631</td>
</tr>
<tr>
<td>Req</td>
<td>2255</td>
<td>1370</td>
<td>3886</td>
<td>1355</td>
</tr>
</tbody>
</table>

Reserve be Telescope or keep as system margin

<table>
<thead>
<tr>
<th>Minimum Reserve</th>
<th>Reserve</th>
<th>Residual</th>
<th>Reserve</th>
<th>Residual</th>
<th>Reserve</th>
<th>Residual</th>
<th>Reserve</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Req</td>
<td>0</td>
<td>2255</td>
<td>2255</td>
<td>1370</td>
<td>1370</td>
<td>3886</td>
<td>3886</td>
<td>1355</td>
</tr>
</tbody>
</table>
OST Concept 2

Secondary Mirror (SM)

Primary Mirror (PM)

Tertiary Mirror (TM)

~35K boundary

Primary Mirror Backplane

Instrument Mounting Structure (IMS) (not shown)

Spacecraft bus
Baseline mission concept

- 5.9 m diameter telescope, same collecting area as JWST
- MISC Transit Spectrometer (2.8 – 20 µm)
- OSS instrument with all 6 bands, FTS, and etalon, with half the original number of pixels (reduced spatial dimension)
- FIP instrument with 50 and 250 µm channels, polarization, and half the original number of pixels
- Temperature increased from 4 to 4.5 K - modest cost saving, but reduces risk and relaxes detector NEP requirement
- Dropped the heterodyne instrument, HERO, and the MISC imager, but maintain volumes allocated to these items
- Descoped items become upscope options
- Changes have only a modest impact on the highest priority science
OST Field of View: Concept 2

- OSS – Origins Survey Spectrometer
- HERO – Heterodyne Receiver for OST
- FIP – Far-IR Imager/Polarimeter
- MISC – Mid-IR Imager and Spectrometer (WFI = Wide-field Imager; TRA = Transit Spectrometer)
OST Field of View: Baseline

- **OSS** – Origins Survey Spectrometer
- **HERO** – Heterodyne Receiver for OST
- **FIP** – Far-IR Imager/Polarimeter
- **MISC** – Mid-IR Imager and Spectrometer (WFI = Wide-field Imager; TRA = Transit Spectrometer)
OST sensitivity

OST is about 3 orders of magnitude more sensitive than Herschel, thanks to its cold temperature and next-generation detectors.

Equivalent difference for an optical telescope to achieve 1000x sensitivity
OST spectral resolution

OST’s instruments collectively provide the required spectral resolution.
The OST study team will present a scientifically compelling, low-risk, executable mission concept to the 2020 Decadal Survey.