WR25 & WR140 in X-ray relation to η Carinae

with data from
RXTE, Swift XRT, XMM-Newton EPIC-MOS, Chandra HETG

Andy Pollock (ESA-E) & Mike Corcoran (USRA/NASA-US)
G2G with WR140
Dougherty (CA), Hamaguchi (US), Moffat (CA), Pittard (UK), Williams (UK)

JD13@IAUXXVII General Assembly : 2009 August 14
X-ray bright Wolf-Rayet binaries

WR 25
- η Carinae’s next-door neighbour
- \(V = 7 \) m
- WN6ha+O
- Gamen+ optical radial velocity orbit
 - \(P = 0.569 \) years
 - \(e = 0.595 \)
 - \(\text{asini} = 2.4 \) AU
 - \(T_0, \omega, \text{etc.} \)

WR 140
- \(V = 7 \) m in Cygnus
- WC7+O5
- Marchenko+ optical radial velocity orbit
 - \(P = 7.94 \) years
 - \(e = 0.881 \)
 - \(\text{asini} = 14.1 \) AU
 - \(T_0, \omega, \text{etc.} \)

X-rays from WR 25 & WR 140
Andy.Pollock@esa.int
A.M.T. Pollock
XMM-Newton SOC
European Space Astronomy Centre
Villanueva de la Cañada, Madrid, Spain
WR 25’s L_X-N_X history

XSPEC> model const(\phi) * abs(\phi) * S_x * ISM

X-rays from WR 25 & WR 140
Andy.Pollock@esa.int

A.M.T. Pollock
XMM-Newton SOC

European Space Astronomy Centre
Villanueva de la Cañada, Madrid, Spain
Ingredients for a tractable X-ray model of WR 25

- Gamen+’s optical radial velocity orbit
- orbital inclination
- WN6ha stellar parameters
 - mass-loss rate
 - abundances
 - wind velocity
 - stellar radius
- O stellar parameters
 - mass-loss rate
 - abundances
 - wind velocity
 - stellar radius
- X-ray emitting surface
 - not a point source ⇒ Cantó, Raga & Wilkin (1996)
- Empirical $L_X(D)$
- 50-parameter Xspec local model
 - 77 XMM EPIC-MOS and Swift XRT spectra
 - 3850 parameters
Cantó, Raga and Wilkin (1996) surface

\[\theta_1 \cot \theta_1 = 1 + \beta(\theta \cot \theta - 1) \]

- 2D ⇒ 3D
- WR-star
 - absorption
 - eclipse
- O-star
 - absorption
 - eclipse
- line velocity profiles

\(\bigcirc\) no Coriolis forces
\(\bigcirc\) not a thin shell

X-rays from WR 25 & WR 140
Andy.Pollock@esa.int

A.M.T. Pollock
XMM-Newton SOC

European Space Astronomy Centre
Villanueva de la Cañada, Madrid, Spain
Change of variable ⇒ $L_X(D)$ (cf CWB 1/D)

XSPEC> model const(φ)*abs(φ)*S_X*ISM
CRW-3D eclipse and 1keV absorption in WR 25

X-rays from WR 25 & WR 140
Andy.Pollock@esa.int

A.M.T. Pollock
XMM-Newton SOC

European Space Astronomy Centre
Villanueva de la Cañada, Madrid, Spain
CRW-3D “minimum” radius for WR 25

- \(R_{WN6ha} \geq 49 \, R_\odot \) (50% higher than HGL(2006))
- \(\frac{dM}{dT} = 2.7 \times 10^{-6} \, M_\odot \, yr^{-1} \) (20x lower than HGL(2006))
- inclination fixed at 90°
- Gamen+ orbital parameters relaxed
- C-statistic = 36505.65 using 44139 bins and 44131 degrees of freedom
WR140’s colliding-wind shocks

colliding winds ⇔ counter-streaming plasma flows ⇔ well-known boundary conditions \{μ, n, v, T\}

Stevens, Blondin & Pollock (1992) numerical hydrodynamics

X-rays from WR 25 & WR 140
Andy.Pollock@esa.int

A.M.T. Pollock
XMM-Newton SOC

European Space Astronomy Centre
Villanueva de la Cañada, Madrid, Spain
WR140’s 2-10 keV X-rays with RXTE

\[T(D) \leftrightarrow P(\rho) \]

X-rays at low resolution

X-rays from WR 25 & WR 140
Andy.Pollock@esa.int

A.M.T. Pollock
XMM-Newton SOC

European Space Astronomy Centre
Villanueva de la Cañada, Madrid, Spain
WR140 with RXTE through the 2009 event

X-rays at low resolution
Also Swift XRT, Suzaku & XMM

X-rays from WR 25 & WR 140
Andy.Pollock@esa.int

A.M.T. Pollock
XMM-Newton SOC

European Space Astronomy Centre
Villanueva de la Cañada, Madrid, Spain
WR140 with RXTE through the 2009 event

\[\text{XSPEC} > \text{model} \ const(\phi) \times \text{abs}(\phi) \times S_x \times \text{ISM} \]

\[N_x(\text{WR140}) > 50 \ N_x(\text{WR25}) \]

X-rays from WR 25 & WR 140

A.M.T. Pollock
XMM-Newton SOC

European Space Astronomy Centre
Villanueva de la Cañada, Madrid, Spain
Change of variable $\Rightarrow L_X(D)$ (cf CWB 1/D)

XSPEC> model const(ϕ)*abs(ϕ)*S_X*ISM

X-rays from WR 25 & WR 140
Andy.Pollock@esa.int

A.M.T. Pollock
XMM-Newton SOC

European Space Astronomy Centre
Villanueva de la Cañada, Madrid, Spain
Chandra phase-dependent grating spectra of WR140

2006-04-01
(φ,D/a,θ)=(2.649,1.77,-36°)
apastron

2008-08-22
(φ,D/a,θ)=(2.951,0.59,+2°)
O-star

2000-12-29
(φ,D/a,θ)=(1.987,0.23,+44°)
periastron

X-rays from WR 25 & WR 140
Andy.Pollock@esa.int

A.M.T. Pollock
XMM-Newton SOC

European Space Astronomy Centre
Villanueva de la Cañada, Madrid, Spain
Chandra phase-dependent spectra of WR140

- hot electron continuum 80%
- lines 20%
 - no RRCs
- vnp shock WC abundances
 - Ne, O etc.

X-rays at high resolution

X-rays from WR 25 & WR 140

A.M.T. Pollock
XMM-Newton SOC

European Space Astronomy Centre
Villanueva de la Cañada, Madrid, Spain
Chandra normalised spectra of WR140

X-rays at high resolution

X-rays from WR 25 & WR 140

A.M.T. Pollock
XMM-Newton SOC

European Space Astronomy Centre
Villanueva de la Cañada, Madrid, Spain
WR140’s shock and post-shock physics

✧✧✧ Spitzer ⊕ Zel’dovich & Raizer Coulomb-collisional arguments
 ✧✧✧ $I_{\text{ion-ion}} \approx 14(D/a)^2 \text{ AU} \Rightarrow \text{collisionless shocks}$
 ✧✧✧ $I_{\text{ion-electron}} \approx 21(D/a)^2 \text{ AU} \Rightarrow \text{free electron heat up slowly}$
 ✧✧✧ $I_{\text{ionization}} \approx 8(D/a)^2 \text{ AU} \Rightarrow \text{bounds electrons freed slowly}$

✧✧✧ WR140’s spectrum looks like a collisional plasma
 ✧✧✧ Coulomb collisions are not enough
 ✧✧✧ plasma physics ⇔ B
 ✧✧✧ Alfvén waves
 ✧✧✧ wave-particle interactions
 ✧✧✧ Weibel instability
 ✧✧✧ two-stream instability
 ✧✧✧ ¬ equilibrium
 ✧✧✧ charge exchange
 ✧✧✧ no ionization precursor

✧✧✧ cf SNR & solar wind ↗ magnetosphere
Chandra X-ray NeX line profiles

cf Henley+ (2003) and CRW-3D

X-rays at high resolution

X-rays from WR 25 & WR 140

A.M.T. Pollock

XMM-Newton SOC

European Space Astronomy Centre

Villanueva de la Cañada, Madrid, Spain
Chandra X-ray mean line profiles

Mean X-ray line profiles

X-rays at high resolution
X-rays from WR 25 & WR 140
Andy.Pollock@esa.int
A.M.T. Pollock
XMM-Newton SOC
European Space Astronomy Centre
Villanueva de la Cañada, Madrid, Spain
WR140 X-ray implications and complications

- P=2896d?
- X-ray spectra nearly identical in shape at φ=2.649 and φ=2.951
- X-ray eclipse started slowly
 - soon after O-star conjunction
 - well before quadrature
- shocked WC and O5 material mix
- line profiles combine bulk and random components
 - width(IP)
 - affected by stellar eclipses
Interim lessons from WR25 & WR140

- Eclipses of extended CWB X-ray sources
 - WR wind
 - WR star
- Out of eclipse
 - No obvious flares
 - Significant departures from $L_{\times}(D) \propto 1/D$
- Collisionless plasma looks collisional
 - shocked WR and O-star material mix
 - collisionless ionization?