Eta Carinae in the context of the most massive stars:
a dedication to Sveneric Johansson (1942-2008)

Henrik Hartman, Lund Observatory, Sweden
IAU GA XXVII, Joint Discussion 13, Aug 3-14, 2009
Sveneric Johansson (1942-2008)

- PhD at Lund University (1978), Sweden, with Prof. Bengt Edlén, Spektroskopiska undersökningar av Fe II’.
- Sabbatical at Goddard Space Flight Center (MD/USA) during 1987-88.
- Professor 1999 and founder of the Atomic Astrophysics group 2001 and the Edlén Laboratory at Lund Observatory.
- Classical atomic spectroscopist with an unusual feeling for atomic spectra and atomic structure, especially the iron group elements.
Several major astronomical discoveries originate in laboratory investigations, performed for their intrinsic interest and not primarily aiming for a specific astrophysical problem.

- **Ira Bowen**, suggesting fluorescence (Bowen mechanism) in 1924 and identification of the first forbidden lines, [O III] in 1928.
- **Bengt Edlén**, Identification of highly ionized carbon, nitrogen and oxygen (e.g. C III, C IV, N IV, N V and O IV) in Wolf-Rayet stars.

He also identified the coronal lines with fine structure transitions in highly ionized iron group elements, e.g. FeX and Fe XI.
Scientific achievements – term analysis

Skilful atomic spectroscopist with a feeling for term analysis.
Analyses on important iron group elements, primarily Fe II, but also, Sc II, Ti II, Cr II
Early investigations in the near infrared wavelength range, in the 1970’s
Later FTS measurements in UV-opt.
1972 given Fell as PhD project, but only investigations to 1 μm, since longer wavelengths ‘will never be observed by astronomers’ (Edlén, 70’s). 300 levels known by then.

Over 1000 energy levels known (2009).

The last of these, $3d^5(5S)4s4f$, were identified in the spectrum of HR6000, the first identified from a stellar spectrum.

Absorption requires population in the lower level, whereas emission needs population in the upper level. What is the result on the analysis? Are not 300 levels sufficient?
Scientific achievements – HST lab spectroscopy

Sveneric Johansson foresaw the need of high-resolution, high-accuracy atomic data in the UV with the upcoming HST.

Together with Dave Leckrone on the pathfinder project on $\chi$ Lupi:
Wavelengths, line profiles (isotopes) and line strengths.

Here seen with the Lund UV-FTS.
Main scientific achievements

- Early HST spectroscopy and dedicated laboratory analyses for this.
- $\chi$ Lupi, one of the first targets for HST/Goddard High Resolution Spectrograph, where many elements were observed for the first time except for the sun.
- Spectroscopic investigations of iron, yttrium, mercury, boron, gold, radynamium, nickel, thallium, platinum, zirconium.
- Wavelengths, isotopic structure, and oscillator strengths.
- The FERRUM project – evaluated oscillator strengths.
- Analysis of HST spectra (Davidson and Gull), and later photoprocesses with V. Letokhov.
Conference organiser

- Initiated the international triannual conference series: *Atomic Spectroscopy and Oscillator Strengths* (ASOS), first held in Lund 1983 and most recently in 2007 was held in memory to Svenerics retirement.
- Hosted the ’Eta Carinae and other mysterious stars’ conference on Hven in 2000.
Photoprocesses in astrophysical plasmas
applications to Eta Carinae’s ejecta

- Identification of fluorescence mechanism in symbiotic stars and stellar winds.
- Suggested stimulated emission in Fe II lines observed in Eta Carinae’s ejecta, based on line ratios in Fe II UV lines at 2506/8 Å.

Johansson and Letokhov:
- Concept of Resonance Enhanced Two-Photon Ionization (RETPI) to explain the strengths and anomalous behaviour of spectral lines in the spectrum of Eta Carinae.
- LASER routes in Fe II and other ions.
Vladilen Letokhov (1939-2009)

- Specialized in the field of atomic physics and laser theory. Early work of laser cooling and Bose-Einstein condensates.
- Head of Laser Spectroscopy Department, Troitsk, Moscow. Guest professor at several institutes.
- Almost 900 published papers, and 15 monographs.
Sveneric Johansson and Vladilen Letokhov sadly passed on during the last year. Their final publication ‘Astrophysical Lasers’ was published earlier this year.