Star Formation and Outflow Research with a Large Optical-UV Space Telescope

P. Hartigan (Rice Univ.) SIG 2 Workshop June 25, 2015

- 1. Overview of Star Formation
- 2. Spatial Scales
- 3. Spectral Resolution
- 4. Spectral Range
- 5. Example Science Project

Star Formation Overview

DISK SCALE

ENVELOPE SCALE

CLOUD SCALE

Star Formation Overview

DISK SCALE

ENVELOPE SCALE

CLOUD SCALE

Spatial Scales

Increasing Mass/Size> of Region			Statistical Studies Possible		
	Gas Disk	Cloud with Dusty Accretion Disks	Cluster with a few O stars	Cluster with >~10 of O stars	00 Starburst Cluster
Nearest Example: Distance:	TW Hya	Taurus/Auriga	Orion	Carina	30 Doradus (LMC)
	54 pc	140 pc	410 pc	2.3 kpc	49 kpc
# of Stars in Group:	Isolated	50	1000	30000	>30000
1.2 λ / D HST UV (2000 A): HST Optical (5000 A):	1.1 AU	2.9 AU	8.5 AU	50 AU	1000 AU
	2.8 AU	7.2 AU	21 AU	120 AU	2500 AU
1.2 λ / D 12-m UV (2000 A): 12-m Optical (5000 A):	0.22 AU	0.58 AU	1.7 AU	9.5 AU	200 AU
	0.56 AU	1.4 AU	4.2 AU	24 AU	500 AU

Spatial Scales

Increasing Mass/Size> of Region			Statistical Studies Possible		
	Gas Disk	Cloud with Dusty Accretion Disks	Cluster with a few O stars	Cluster with >~1 of O stars	00 Starburst Cluster
Nearest Example:	TW Hya	Taurus/Auriga	Orion	Carina	30 Doradus (LMC)
Distance:	54 pc	140 pc	410 pc	2.3 kpc	49 kpc
# of Stars in Group:	Isolated	50	1000	30000	>30000
1.2 λ / D HST_UV (2000 A):	1.1 AU	2.9 AU	8.5 AU	50 AU	1000 AU
HST Optical (5000 A):	2.8 AU	7.2 AU	21 AU	120 AU	2500 AU
1.2 λ / D 12-m UV (2000 A):	0.22 AU	0.58 AU	1.7 AU	9.5 AU	200 AU
12-m Optical (5000 A):	0.56 AL	1.4 AU	4.2 AU	24 AU	500 AU
Considerations			On	tical	

- What emits/absorbs in UV/opt ٠
- Extinction ٠
- Spectral information can be more • important than spatial resolution especially in red and orange zones

_
Accretion Columns
Chromospheres
Gas Fluorescence/Absorption
Photoevaporation
Jet Bow Shocks
HII Region dust distribution

Optical Accretion Columns

Inner Disk Wall

Jet Acceleration

Resolved Disk Imaging

Jet Collimation

Photoevaporation Jet Rotation **Cooling Distances in Jets** Jet Bow Shocks **Disk Imaging/Detection** Binary Disk Interactions HII region cavities

Spectral Resolution

Keplerian Motion

5	Stellar Size	Disk Wall	Earth	Jet Rotation
Distance	0.01 AU	0.1 AU	1 AU	100 AU
Orbital Velocity (1 M _o)	300 km/s	95 km/s	30 km/s	3 km/s
Spectral Resolution	10 ³	3x10 ³	104	10 ⁵

Thermal Broadening

Example	Warm Disk	HII Region	Strong Shock
Temperature	10 ³ K	10 ⁴ K	10 ⁵ K
H Sound Speed	3.7 km/s	12 km/s	37 km/s
Spectral Resolution	1 8x10 ⁴	2.5x10 ⁴	8000

Optical

UV

Accretion Columns	Accretion Columns	Photoevaporation
Chromospheres	Inner Disk Wall	Jet Rotation
Gas Fluorescence/Absorption	Jet Acceleration	Cooling Distances in Jets
Photoevaporation	Jet Collimation	Jet Bow Shocks
Jet Bow Shocks	Resolved Disk Imaging	Disk Imaging/Detection
HII Region cavities	Binary Disk Interactions	HII region cavities

Spectral Range

Temperature 3x10³ K 10⁴ K 3x10⁴ K 1.5x10⁵ K $4 \times 10^5 \text{ K}$ 1.5x10⁶ K Tracer [S II], [Fe II] [O III] NV O VI X-ray many Wavelength 6720A, 1.6µ 10A optical 5007A 1240A 1038A

- Wavelengths shorter than Ly α are important to bridge temperatures to X-rays
- Broad UV coverage needed for any complete temperature/ionization analysis
- O VI provides a unique means to study coronae, shocked interfaces, and hot winds

HST and FUSE went for high-resolution and small apertures in the UV. A larger telescope should have a long-slit capability to make use of spatial resolution and to detect extended diffuse emission

Sample Project

Note Spatial Scale!

Sample Project

Sample Project

Do something similar, but with velocity-resolved images, and five times the spatial resolution