The CGM plays a fundamental role in and potentially
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The CGM plays a fundamental role in and potentially
provides unique constraints on galaxy evolution.
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COS-Halos survey to study CGM vs. galaxy properties
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COS-Halos: warm metals in CGM associated with star formation.
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The presence and quantity of “warm” metals is strongly
correlated with star formation properties of galaxies.

..but it is not for H | (Thom+ 2012).



The CGM harbors a large fraction of galactic baryons
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Typical mass of cool gas in CGM: CGM (Cool)
Mcool cGM ~ 6 X 10'0 Mo 35%

Cool+Warm CGM mass budget:

ISM
Typical mass of warm gas in CGM: 39

Mwarm cam ~ 2 x 10'° Mo Hot Corona

10%

There may not be a galactic
“missing baryons problem.”

 CGM (Warm)
15%

Other
13%

Werk+ (2014); also Stock+ (2013), Lehner+ (2015),



The CGM harbors as many metals as stars in galaxies.

Peeples+ (2014)

100% | | | | L I | L | | I I | I LI |

[ circumgalactic |
« oI OVlI-traced low-ions dust X-ray traced -
>40% of all metals % 80% B alactic B
made in a galaxy E B S i
are easily S ool A stars ISM |
identified. = [ B
\Jj\_ ; i
o . 7
o 40% (1 —
50 ! 4

] I
-~ | /1 —

5 /|

) :

O ) =

A~
0%

9.5 10 10.5 11
log M4/ M)

There are as many
metals present in
the CGM as in
stars in galaxies. Stars+ISM+dust = 20%




The CGM harbors a large fraction of galactic baryons

AMIGA sight lines
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We want to dissect the CGM of galaxies, learning about each component.

We'd like to make a map of the
CGM and tag the gas by its

origins.
Use metallicity as a probe of origins.
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Lyman limit systems probe infall and outflows at low-z.

Metallicity distribution of z < 1.0 Lyman limit systems
[16.1 <log N(HI) < 18.5]
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Lyman limit systems probe infall and outflows at low-z.

Metallicity distribution of z < 1.0 Lyman limit systems
[16.1 <log N(HI) < 18.5]
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(e.g., tidal material, recycled outflows)
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How does the MDF of the LLSS/CGM evolve W|th Z?
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The future: mapping the origins of the CGM gas

) We want to map the CGM as a
function of ionization state and
metallicity.

Infalling gas Outflowing gas
" : Shen+(2013):

This means:

— Developing better statistical maps of the CGM with
galaxy properties, etc. (ala COS-Halos).

— Directly mapping absorption lines toward many
sight lines in individual galaxies, headed toward
tomography. (Not even done yet for M31.)

— Observing resolved galaxies at low redshift to connect to
H | mapping. (2/-cm won’t get <few x 10'7 cm™.)

— Emission line imaging.

Critical capabilities:

— Large aperture (sensitivity).

— High resolution (R>20,000).

— FUV capability to ~1000 A.

— Efficient NUV capabilities to 3000 A (Lyc).

Higher ionization states more directly probe the
driving fluid, the more diffuse CGM.

— ...or UV imaging sensitivity, perhaps spectral image
slicers or narrowband filters.




The future: mapping the origins of the CGM gas
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) We want to map the CGM as a
function of ionization state and

metallicity.
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The future: connecting galaxies to the cosmic web

2) We want to connect the CGM
directly to structures in the cosmic
web, trace CGM with environment.

200 ckpec

We'd like to understand the filament/
CGM interaction at ~Rir.

This means:
— Extending mapping of CGM to large scales.

— Tracing structures via spatial / metallicity
information.

— Tracing the hot coronal matter to ~Ryi-.

Critical capabilities:

— Large aperture (sensitivity).

' — High resolution (R>20,000)? Could use moderate
Nelson+ (2015
elson+ (2015) resolution (R~5000+) for H I.

— FUV sensitivity to ~1000 A, though NUV sensitivity
better for H I.

— Multi-object spectroscopy on large angular scales!?




The future: probing galactic outflows on large scales

Hubble Uses Quasar Light to Probe Outflow Bubbles in Our Milky Way
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We are only probing the swept up gas with low
ionization studies.We need to cover high ions in order
to measure the driving fluid + metals.
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3) We want to map galactic winds on
scales from ~few kpc to Ryir to capture
the redistribution of mass, metals
in the CGM and their return.

This means:

— Using down-the-barrel experiments to trace outflows
at their source(s).

— Mapping more extended regions with background
QSO:s.

— Capturing the broadest possible range of ions, esp.
those tracing the hot gas (e.g., OVI,Ne VIl @
z~0.3).

— Emission line imaging (in resonance lines)?

Critical capabilities:
— Large aperture (sensitivity).
— FUV capability to ~1000 A.

— High resolution (R>20,000) + moderate resolution
(R ~ 5000+).

— ...or UV imaging sensitivity, perhaps spectral image
slicers or narrowband filters.




The future: probing origins of galactic outflows
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Imagine these as individual UV slits for which we obtain
R~5000+ spectra.

Such a capability could be especially powerful on larger
scales against redshifted galaxies for mapping H |
absorption.

4) We want to map the origins of
outflows across galaxies, understanding
the dynamics of both fountains and
winds.

This means:

— Using down-the-barrel experiments to trace outflows
at their source against individual star forming
regions.

— Leveraging multi-object capabilities.

Critical capabilities:
— Multi-object capability.
— Moderate resolution (R ~ 5000+).




Food for thought: the CGM with HDST
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* A future large aperture mission — even if only equipped

with an HST-like

would enable us to understand how the CGM drives

galaxy evolution.

- The important questions of the mode of accretion, connection to the cosmic web, driving of
winds, total metal content, ionization mechanisms can be addressed.
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complement of spectrographs -

* Novel approaches with MOS could allow mass-
production surveys of bulk CGM properties, especially in
parallel with other programs.

- In fact, we probably NEED to have advances in multiplexing, technologies to justify the
extreme cost.



