

M dwarf: FUV/NUV ~ 1 Sun: FUV/NUV ~ 10 ⁻³ Shape and amplitude of stellar UV
spectrum may drive abiotic production of
"biomarker" gases like ozone on rocky
planets in the habitable zone

Tian et al. 2014 Domagal-Goldman et al. 2014

 X-ray→ UV→ visible survey of M and K exoplanet host stars within 15 pc to understand the initial conditions for atmospheric chemistry: MUSCLES Survey with HST, Chandra, XMM, ground-based telescopes

PI - France

Kevin France

University of Colorado at Boulder (w/ Linsky, Roberge, Kaltenegger, Llama et al.) SIG2 UVOIR Workshop, June 2015

Earth-mass Planets around M and K dwarfs: The

Production of (and "Biomar

Artist's View of Extrasolar Planet HD 209458b NASA, ESA, and G. Bacon (STScI) • STScI-PRC10-21

 Hot Jupiter transits: FUV transmission spectroscopy the best technique for observations of atmospheric mass-loss outside the solar system. Currently limited by data quality.

• Exo-Earth transits: they have extended atomic atmospheres too...

Kevin France

- (R_{planet}/R_{*}) for O₂, O₃, CO, CO₂, H₂, and H all peak in the UV, 100 - 400 nm.
- O₃ peak at 250 nm, O₂ peak at 160nm: habitable planets around F and A stars. (start discovery now)
- <u>NEED</u>: 8+ m primary, facility-class UV spectrograph, large photon-counting UV detectors

Slides from Joe Llama – Lowell Obs

Stellar wind

<u>Vidotto et al. 2010:</u> Interaction between stellar wind and planetary magnetic field causes compression.

• Llama et al. (2011):

- Potential detection of a magnetic field around WASP-12b.
- Magnetosphere protects the atmosphere to ~5 Rp.
- Bp ~ 24 Gauss.
- <u>ArXiv: 1106.2935</u>

- The far-UV and Lyman-UV have the strongest dipole-allowed transitions systems of H₂ and CO. <u>Resolved spectral line profiles</u> contain information about the 3-D distribution of gas inside 10 AU in disks with ages ≤ 30 Myr
- Survey of ~40 protoplanetary systems with *HST*-COS, characterizing the H₂ disks and discovering fluorescent CO in these environments (*France+ 2011, 2012; Hoadley+ 2015*)

Kevin France

University of Colorado at Boulder (w/ Herczeg, Brown, Alexander, et al.) SIG2 UVOIR Workshop, June 2015

Hoadley+ (2015)

- UV and IR data finds molecular gas inside gust gaps to be ubiquitous. Possible signature of forming protoplanetary systems.
- UV lines of H₂ & CO Sensitive to • extremely small amounts of gas, period of transition to debris disks: primordial gas disk lifetime.
- MOS with R = 3000-5000 could survey hundreds/thousands of disks

- UV and IR data finds molecular gas inside gust gaps to be ubiquitous. Possible signature of forming protoplanetary systems.
- UV lines of H₂ & CO Sensitive to extremely small amounts of gas, period of transition to debris disks: primordial gas disk lifetime.
- MOS with R = 3000-5000 could survey hundreds/thousands of disks

- Larger samples in a range of star-forming environments are necessary to provide a complete picture of the composition, structure, and lifetime of gas disks.
- Higher sensitivity + high-resolution far-UV absorption line spectroscopy of CO, H₂, and H₂O enable quantitative compositional analysis
- <u>NEED</u>: 8+ m primary, facility-class UV echelle spectrograph, advanced UV coatings for 100 - 120 nm region

Kevin France

Composition, Distribution, and Lifetime of Molecular Gas at r < 10 A

- Higher sensitivity + high-resolution far-UV absorption line spectroscopy of CO, H₂, and H₂O enable quantitative compositional analysis
- <u>NEED</u>: 8+ m primary, facility-class UV echelle spectrograph, advanced UV coatings for 100 - 120 nm region

Composition, Distribution and Lifetime of Molecular Gas at r < 10 A

- Higher sensitivity + high-resolution far-UV absorption line spectroscopy of CO, H₂, and H₂O enable quantitative compositional analysis
- <u>NEED</u>: 8+ m primary, facility-class UV echelle spectrograph, advanced UV coatings for 100 - 120 nm region

Composition, Distribution and Lifetime of Molecular Gas at r < 10 A

- Higher sensitivity + high-resolution far-UV absorption line spectroscopy of CO, H₂, and H₂O enable quantitative compositional analysis
- <u>NEED</u>: 8+ m primary, facility-class UV echelle spectrograph, advanced UV coatings for 100 - 120 nm region

Composition, Distribution and Lifetime of Molecular Gas at r < 10 A

- Higher sensitivity + high-resolution far-UV absorption line spectroscopy of CO, H₂, and H₂O enable quantitative compositional analysis
- <u>NEED</u>: 8+ m primary, facility-class UV echelle spectrograph, advanced UV coatings for 100 - 120 nm region

adapted fre

Dullemond

monnier 2010 2500 500 K Hot Molecules, H Warm Molecules, CO OVI. Cool Dust CIV Cool/Warm Molecules With or W/O Optically Thick Dust ~0.05 AU -0.1 5 r 5 -3 AU -2 5 15 -10 AU

Winds

IR-CO

accretion

Accretion

- Inclination of a large number of disks can • be known from SMA and ALMA
- Distribution of inclination angle and ages • allows 4-D mapping of disks $[r,h,t,\lambda]$
- Telescope aperture determines how close to the disk midplane you can probe (current record for UV spectroscopy: A_v =7.6)

Kevin France University of Colorado at Boulder

