Fostering Support for Flagships

Mark Clampin (GSFC)

Building Community Consensus

- Importance of a compelling science case
 - Broad science community
 - Exoplanets and general astrophysics
 - General public
 - Decisions makers

Mission provides a significant technical advance

Observatory offers broad involvement for the whole science community e.g. GO program

Programmatics

 Early cost estimates are subject to large uncertainty during concept development phase

- Focus initially on cost control:
 - Identification of key technologies
 - Science requirement traceability
 - Robust performance margins
 - Infrastructure and logistics
 - Implementing lessons learned

Technology Development: I

- Invest early in technology
 - JWST invested early and this paid off
- Technologies development to TRL-5
 - Competitive down-selects
 - JWST mirror development is a good example
 - ➡ TRL-6 requires:
 - Flight-like system (engineering unit)
 - Technology must be manufactured per flight
 - TRL-6 requires defined mission with launcher
 - Independent review process

Technology Development: II

- For large missions, complexity >> Σ technologies
 - Missing technology is System Engineering (SE)
 - Require early attention to SE of the requirements
- Technology transition to TRL 6 has to include assessment for system level dependency e.g.
 - A detector requiring a cryocooler can induce jitter which impacts image quality and optical stability
- Yield has to be a key TRL consideration, for sensors
- Technology doesn't always transfer ground space
- Leverage technology investments

Leveraging JWST Technology Investments

Leveraging JWST Technology Investments

Mirror Backplanes

Composite, primary mirror backplane structures scaleable to ≥ 10 meter apertures

TV Test Facilities

Thermal vacuum test chamber facility, optimized for large aperture telescopes

Control System

Wavefront Sensing and control for large, segmented optical systems

UVOIR Observatory

<u>Sunshield</u>

Large deployable, sunshield structures

Integration and Test

Precision high-speed interferometric testing of mirror segments with ≤ SFE precision

Segmented Mirrors

MMSD mirror program demonstrates lightweight ULE segments capable of ~pm stability with active thermal control @ 300K

Deployment Mechanisms

Mechanisms and latches employed in deployment of large structures and sunshields

Operating Temperature

- Do not compare cost of cryogenic (JWST) to room temperature (HST) observatories
 - Cryogenic observatory requires much more time to build e.g. cryo-polishing of optics
 - I&T has to be incremental and is more costly
 - Cryogenic observatories not suited to modular designs, due to thermal packaging requirements
 - Structures have to be designed for safe margins over very large temperature ranges
 - Passive and active cooling systems place large overhead on observatory design and performance

Requirements

- Requirements have to be clearly written
 - e.g. Define zodi-limited performance by stating the wavelength range and definition
- Start out with a clear set of definitions for ACS (pointing) and define their linkage to image quality prior to developing error budgets
- Early assessment of stray light requirements on the observatory design is mandatory
- Include I&T specialists early in design phase to ensure that design can be assembled & tested

Requirements

- Do not add capabilities without systems assessment
- Observatory level descopes can incur significant cost due to unforeseen impacts
- Keep designs simple, fully integrated and carefully assess complexity
 - For exoplanet imaging simplest designs are often more complex because they are not "integrated solutions" and require significant additional instrumentation
- Effective costing requires post phase-A understanding of requirements

Instruments

- Insist on common instrument architectures
 - Optical bench & mount materials
 - Mechanical, electrical & data interfaces
- Provide alignment adjustment in each instrument
- Avoid embedding engineering functions in science instruments i.e. dual-role instruments