Summary of ExoPAG Science Interest Group #1 Activities and Outcomes

Finding the UV–Visible Path Forward: A Community Workshop to Plan the Future of UV/Visible Space Astrophysics
June 25, 2015
Scott Gaudi
(SIG#1 Chair)
NASA’s Charge to the PAGs.

“I am charging the Astrophysics PAGs to solicit community input for the purpose of commenting on the small set [of large mission concepts to study], including adding or subtracting large mission concepts.”
Initial list of missions.

Taken from NASA Roadmap (Surveyors) and Decadal Survey (HabEx)

- Far IR Surveyor
- Habitable-Exoplanet Imaging Mission
- UV/Optical/IR Surveyor
- X-ray Surveyor
ExoPAG’s Response to Paul’s Large Mission Charge.

• The ExoPAG had already initiated the process of building consensus for an “Exoplanet Roadmap” through the SIG #1 activities.

• The ExoPAG will respond to Paul’s charge under the auspices of this SIG.
Goal of SIG#1.

• Maximize the the opportunities for exoplanets in the next 10–20 years via consensus building and strategic planning.

• In order to achieve this goal, we must develop a compelling vision to accomplish this science:
 – Our peers must be persuaded.
 – Our stakeholders must be persuaded.
 – Developed in time.
 – Robust to positive disruptive science
 – Doable within technology and funding constraints.
Positive Outcomes.

• Having a community vision going into the next decadal survey will improve the chances that our priorities will be executed and/or highly ranked.

• This will also facilitate coordinated efforts to attract other sources of support (industry, philanthropy, entertainment, international).
Defining a successful outcome.

- What does a successful outcome of the SIG activity look like?
 - The SIG identifies a holistic, broad, unified, and coherent plan for exoplanet exploration, focusing on areas where NASA can contribute.
 - Recommendation includes Science ("why"), Measurements ("what"), and Missions/Ground Instruments/Programmatics ("How")
 - Enthusiastically supported by the ExoPAG, NASA Centers, astronomical community.
 - (Response to Paul Hertz’s charge by October 2015)
 - SIG1 preliminary report completed by end of 2015 (?).
How are we going to accomplish this?

1. Define the challenge.
2. Define the goal.
4. Evaluate Feasibility/Risk/Opportunity
5. Develop Recommendation
6. Celebrate!
Structuring the Plan.

• Why?
 • What are the big questions/inquiry areas in exoplanets?

• What?
 • What measurements do we need to make to answer these questions?

• How?
 • What telescopes/”instruments”/missions/technology do we need to make these measurements?

• When?
 • What is the timeline for making these measurements and developing these technologies and missions?
Timeline for STDTs.

• 2015:
 – Identify a small set of candidate large missions to study
 – PAG reports due by October 2015 APS meeting.

• 2016–2019:
 – Initiate studies.
 – Conduct studies.
 – Identify technology requirements
 – Deliver results to decadal survey.
Timeline/Meetings for Hertz Charge (completed).

- March 2014: APS approves SIG #1.
- June 2014: Brainstorming session at ExoPAG 10.
- January 2015: Brainstorming session at ExoPAG 11, Paul’s charge.
- February 2015: First dedicated SIG #1 Meeting, brainstorming & consensus building.
- March 10 COPAG Virtual Town Hall
- March 19, 2015: Joint PAG EC meeting.
 - SIGs and PCOS mini-symposium
- June 2, 2015 – ExoPAG Virtual Meeting
- June 3–5, Far–IR Workshop (Caltech) – COPAG
- June 13–14, ExoPAG #12 (Chicago) – ExoPAG
 - Half to full day to be spent on charge (2nd day)
Timeline/Meetings for Hertz Charge (future).

- June 25–26, UV/Vis SIG Meeting, Greenbelt, MD – COPAG
- July 1 panel discussion during the HEAD meeting (Chicago) – PhysPAG
- July 14, 2015 – ExoPAG Virtual Meeting
- August 2015 – COPAG Virtual Town Hall
- August 7, Joint PAG Splinter Session at IAU, 1–5pm
- August 18, 2015 – ExoPAG Virtual Meeting
- July–September 2015: writing, circulating, finalizing report(s?).
- October 2015: Deliver report to Hertz (two weeks before the APS meeting on October 22+23)
Inputs to date.

- Talks, brainstorming, and discussion at ExoPAGs 9, 10, 11, 12, one stand-alone meeting, and one virtual meeting.
- NASA Astrophysics Roadmap.
- Solicited (and unsolicited) input from a several dozen members of the community.
- COPAG White Papers
SIG #1 Meeting

Collated Suggestions

<table>
<thead>
<tr>
<th>Suggestions</th>
</tr>
</thead>
<tbody>
<tr>
<td>how: can we construct candidate list for target list (from RV, or do we need astrometry)</td>
</tr>
<tr>
<td>how: dedicated precision radial velocity instrument on 10m-class telescope</td>
</tr>
<tr>
<td>how: false positives (strategy for screening)</td>
</tr>
<tr>
<td>how: high-resolution UV spectrograph instrument with capabilities much greater than HST.</td>
</tr>
<tr>
<td>how: Optical and IR spectroscopic instruments on Spitzer, JWST, and future large space missions</td>
</tr>
<tr>
<td>how: probability of a rocky planet in HZ actually being habitable (define as potentially habitable)</td>
</tr>
<tr>
<td>how: TPF-I as a capstone mission</td>
</tr>
<tr>
<td>how: transit characterization mission</td>
</tr>
<tr>
<td>how: understand the astrophysical limits of precision radial velocity, high resolution, large aperture, optical + near-IR</td>
</tr>
<tr>
<td>how: unresolved Doppler shift spectra?</td>
</tr>
<tr>
<td>how: what are the true capabilities for ground-based VLTs for direct imaging?</td>
</tr>
<tr>
<td>how: what is Eta_Earth? Or at least assume for mission designs</td>
</tr>
<tr>
<td>how: what will ELTs do for HZ earths orbiting M stars?</td>
</tr>
<tr>
<td>how: yield goal (how many stars do we need to look at)</td>
</tr>
<tr>
<td>how: 2015 is too early to be presuming anything about mission size, narrow down after considering all of the options</td>
</tr>
<tr>
<td>how: a large ($8B-$10B) mission will be dead on arrival for 2020-2030, due to "JWST hangover", need to consider alternatives</td>
</tr>
<tr>
<td>how: a mission must do direct spectroscopy of earth analogs to be relevant when launched, need to start now for US leadership role</td>
</tr>
<tr>
<td>how: boost R&A grants by a factor of ~3</td>
</tr>
<tr>
<td>how: bring in planetary scientists</td>
</tr>
<tr>
<td>how: Can we sell a mission that doesn’t look for and characterize Earth-like planets?</td>
</tr>
<tr>
<td>how: consider aperture as metric for comparison with other science</td>
</tr>
<tr>
<td>how: convince the entire community (get observing time)</td>
</tr>
<tr>
<td>how: develop a consensus program with a modest flagship plus modest “Probe” class options</td>
</tr>
<tr>
<td>how: develop a menu of options of increasing costs and capabilities: occulter for WFIRST/AFTA -> 4-m class -> 12-16-m class.</td>
</tr>
<tr>
<td>how: direct imaging mission: go as big as possible, without creating a budget crises (starving R&A)</td>
</tr>
<tr>
<td>how: direct imaging mission: where to set the bar for the minimum justifiable science, is that affordable?</td>
</tr>
<tr>
<td>how: discuss with COPAG</td>
</tr>
<tr>
<td>how: don’t put all our eggs in the "spectra of Earth-twin" to sell a mission</td>
</tr>
<tr>
<td>how: don’t constrain the budget too much early on (let the science lead, then marshal resources to that goal)</td>
</tr>
<tr>
<td>how: even a dedicated mission can be tuned to various science programs, and incorporate other science goals</td>
</tr>
<tr>
<td>how: exoplanet community must unite behind WFIRST-AFTA + coronagraph</td>
</tr>
<tr>
<td>how: Far IR surveyor, LUVOIR surveyor, Habitable Exo-planet Imaging Mission, X-ray surveyor</td>
</tr>
<tr>
<td>how: go for big goal, or make sure you also harvest all of the low hanging fruit (how do you prioritize)</td>
</tr>
<tr>
<td>how: how do we allocate observing time between science objectives?</td>
</tr>
<tr>
<td>how: how do we not become a non-fractured community?</td>
</tr>
<tr>
<td>how: how to avoid mission creep (assess needs)</td>
</tr>
<tr>
<td>how: how to get mission selected (engage entire community early on)</td>
</tr>
</tbody>
</table>
SIG #1 Meeting
Collated Suggestions

how: large DI mission questions: launch vehicle? UV+coronagraph compatibility? Starshade viable, and demonstrable?
how: major missions: have to demonstrate that they are capable of a broad range of science
how: make sure the dedicated technology advances other (broader) science
how: maximize probability of actually flying a mission
how: national or agency priority (get buy in from entire agency)
how: need an intermediate mission category ($500M - $1B), enable an image-based astrometry or transit spectroscopy mission?
how: not realistic to do spectroscopy of exo-Earths using an internal coronagraph
how: probes are cost-capped, not science constrained
how: put all of our eggs in one basket for a large flagship mission, or study more affordable 2-4m missions
how: serving the entire community, time needs, yield goal
how: support theoretical models on planet formations, atmospheres, climate, bio-signatures, etc.
how: technology for 10^-10 contrast imaging with segmented apertures appears unlikely to be ready in time for Astro2020
how: viability: technology, multiple communities, other science mission can do
how: what missions do we recommend for technology development
how: when is the next flagship mission?
what: K2,TESS, PLATO, GAIA: precision radial velocity follow-up
what: earth analogs: R=100 spectroscopy, 30 magnitude objects, 0.2" from a 5th magnitude star.
what: find Rosette stone planets that tie together the different characterization techniques
what: fundamental parameters of the star (ages)
what: get orbits of the planet (eccentricity), ensure they stay in HZ, etc.
what: host star parallaxes, astroseismology
what: how much risk do we accept when searching for habitable planets
what: is Kepler + WFIRST a good enough survey, or do we need an other mission?
what: look at planets that are not habitable (is the census from WFIRST and Kepler enough)
what: mass loss rates from exoplanet host stars
what: Measure compositions of exoplanet atmospheres, build robust codes to understand the physical and chemical processes
what: measurements of the UV, extreme-UV, and X-ray
what: need spectra of stars (UV), for stellar environment
what: need UV measurements of planetary systems
what: planet formation imager? Mid- to far-IR for young systems
what: precision RV census and masses of planets orbiting the closes FGKM stars for potential HZ targets for DI mission
what: tie habitable planets to those with direct imaging (M-dwarfs): be smart about what has been done from transit searches
what: to understand climate, need mid IR (to confirm habitability and surface temperature)
what: wavelengths do we absolutely have to have, for habitability, and what Resolution
why: Are specific exoplanets habitable?
why: are we alone?
why: characterize exoplanets and solar system planets: interiors, compositions, radii, bulk metallicity, P-T profile, magnetic fields
why: characterizing systems (not just a single planet), Exo-Zodi, dynamics, disks, holistic understanding of the full planetary system
why: comparative planetology
SIG #1 Meeting
Collated Suggestions

<table>
<thead>
<tr>
<th>Why: demographic measurements of planets, host stars and host environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why: Eta_* other planet types (not just Earths) (Hot Earth, super-Earth, etc.) Get also from WFRIST and Kepler</td>
</tr>
<tr>
<td>Why: Exo-planet science also doesn't end with a single spectra of an Earth-twin</td>
</tr>
<tr>
<td>Why: go smaller and smaller, ultimately characterize, biology</td>
</tr>
<tr>
<td>Why: how do exoplanets form?</td>
</tr>
<tr>
<td>Why: how do planet system form? (formation and evolution, this is part of cosmic origins)</td>
</tr>
<tr>
<td>Why: how does planet atmosphere depend on star, formation, evolution</td>
</tr>
<tr>
<td>Why: language: use broader language than Earth-twin, or planet. Use planetary system, characterize Earth-like planets, etc.</td>
</tr>
<tr>
<td>Why: leverage from diversity (need to characterize more than just a bunch of Earths)</td>
</tr>
<tr>
<td>Why: properties of host stars: demographics, masses, radii, ages</td>
</tr>
<tr>
<td>Why: put Earth in context, not just search for Earth-twin</td>
</tr>
<tr>
<td>Why: search for habitable conditions is primary, and actually finding Earth-like comes after</td>
</tr>
<tr>
<td>Why: synergy with planetary science</td>
</tr>
<tr>
<td>Why: understand all planets as a species</td>
</tr>
<tr>
<td>Why: understand atmosphere is important to understand habitability (chemistry and processes)</td>
</tr>
<tr>
<td>Why: understand habitability planets as a system (geology, integration of the entire planet)</td>
</tr>
<tr>
<td>Why: understanding exoplanets in general in order to inform our understanding of habitable zone planets</td>
</tr>
<tr>
<td>Why: what are exoplanets like?</td>
</tr>
<tr>
<td>Why: what are the architectures of multi-planet systems?</td>
</tr>
<tr>
<td>Why: what are the demographics of moons, belts, cometary systems, and protoplanetary debris disks?</td>
</tr>
<tr>
<td>Why: what are the environments of planets in the universe and over cosmic time?</td>
</tr>
<tr>
<td>Why: what happens to habitable planet when star goes off main sequence</td>
</tr>
<tr>
<td>Why: what is habitability mean (not just Earth-like), what are the implications for bio-signatures</td>
</tr>
<tr>
<td>Why: what planets are out there?</td>
</tr>
<tr>
<td>Why: where is the closest habitable, earthlike zone planet?</td>
</tr>
</tbody>
</table>
Past Meetings Devoted to Paul’s Charge.

• SIG #1 Stand-alone Meeting
 - February 10+11, 2015 at JPL.
 - Roughly 45 people attended in person and remotely.
 - Talks, break-out sessions, brainstorming and group discussions.
 - Afternoon of February 11 devoted to Paul’s charge.
 - Consensus building.
 - Identified questions and topics for future discussions.

• SIG #1 Virtual Meeting
 - June 2, 2015
 - Roughly 40 people attended.
 - Focused on Paul’s charge, mostly discussion and consensus building (no talks)

• SIG #1 Meeting at ExoPAG 12
 - June 14, 2015
 - Roughly 40–50 people attended in person or remotely
 - Talks in the morning, discussions in the afternoon.
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Session</th>
<th>Presenter</th>
<th>Start Time</th>
<th>Duration</th>
<th>End Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 14, 2015</td>
<td></td>
<td>9:00 AM - 12:30 AM Introductory Talks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to the SIG#1 and Hertz Charge Activities</td>
<td>Scott Gaudi</td>
<td>9:00 AM</td>
<td>0:30</td>
<td>9:30 AM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HabEX/Hab2X: The Opportunity to Study the Scientific Capability of An Exoplanet Focused Flagship Mission</td>
<td>Mark Swain</td>
<td>9:30 AM</td>
<td>0:20</td>
<td>9:50 AM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Direct Imaging Wavelength Range Implications for Biosignatures</td>
<td>Shawn Domagal-Goldman</td>
<td>9:50 AM</td>
<td>0:20</td>
<td>10:10 AM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower Limits on Aperture Size for an ExoEarth-Detecting Mission</td>
<td>Chris Stark</td>
<td>10:10 AM</td>
<td>0:20</td>
<td>10:30 AM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Break</td>
<td></td>
<td>10:30 AM</td>
<td>0:30</td>
<td>11:00 AM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exoplanet Nulling Coronagraph With Arbitrary Apertures</td>
<td>Richard Lyon</td>
<td>11:00 AM</td>
<td>0:20</td>
<td>11:20 AM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COR Science With Smaller Apertures</td>
<td>Paul Scowen</td>
<td>11:20 AM</td>
<td>0:20</td>
<td>11:40 AM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exoplanet and Solar System Exploration Synergies Enabled By Future Astrophysics Missions</td>
<td>Britney Schmidt</td>
<td>11:40 AM</td>
<td>0:20</td>
<td>12:00 PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal Coronagraphs for Large Space Telescopes: Scientific Opportunities and Technical Challenges</td>
<td>Olivier Guyon</td>
<td>12:00 PM</td>
<td>0:30</td>
<td>12:30 PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lunch</td>
<td></td>
<td>12:30 PM</td>
<td>1:30</td>
<td>2:00 PM</td>
</tr>
<tr>
<td>Time Frame</td>
<td>Activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00 PM - 3:00 PM</td>
<td>Missions, Structuring of STDTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00 PM - 4:00 PM</td>
<td>Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00 PM - 5:00 PM</td>
<td>Probes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00 PM - 6:00 PM</td>
<td>Path Forward, Report Outline, Writing Assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00 PM</td>
<td>Adjourn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ExoPAG Input into the 2020 Decadal Survey and Large Mission Studies

Virtual Meetings | Face-to-Face Meetings | Science Division Documents | Supporting Documents | Links

Paul Hertz (NASA Astrophysics Division Director) has charged the three Astrophysics Program Analysis Groups (PAGs) with reviewing a small set of candidate large mission concepts, and suggesting addition, subtraction, and other useful summary. The results of this review will be reported at the NASA Advisory Council Subcommittee meeting in October in the form of a report. This page provides information on the charge and the ExoPAG’s plans for responding to this charge and creating this report.

The ExoPAG will respond to this charge in the context of its Science Interest Group #1 activities, as described in the following charter:

SIG #1: Toward a Near-Term Exoplanet Community Plan.

The ExoPAG is soliciting input from the community through three primary methods:

- Direct input to the SIG #1 chair Scott Gaudi: gaudi.1@osu.edu.
- Virtual Meetings
- Face-to-Face Meetings

The COPAG is also soliciting white papers and are happy to receive white papers from the ExoPAG community: http://cor.gsfc.nasa.gov/copag/fi/
Topics of Discussion.

- Joint PAG Reports?
 - Joint summary.
 - Joint table.
- Should we add any missions?
- Should we subtract/merge any missions?
- Should we study the full range of exoplanet direct imaging architectures?
- How should we organize the STDTs for these missions?
- What non-exoplanet science can be done with smaller apertures (e.g., for HabEx)?
- What roles do the Far-IR and X-ray Surveyors play in exoplanet science?
- What do we say about probes?
Points of Consensus.

1. There was a general support for WFIRST with a coronagraph and a starshade.
2. There was a general consensus that a broad range of apertures and architectures for direct imaging missions should be studied, encompassing both the nominal concepts of the HabEx and LUVOIR missions.
3. There was a general consensus that there should be a common executive summary with the other PAG reports. It was agreed that the executive summary should include: a statement that we support these four missions being studied, a recommendation for probe studies, and suggestions for how STDTs should be organized (provided that the other PAGs are in agreement on these points).
4. There was a general consensus that a common table describing the nominal parameters of the four missions should be included in the PAG reports. These parameters are to be determined in future discussions with the ExoPAG and other PAGs.
5. There was a general consensus that we should neither add nor subtract from the four proposed mission concepts (HabEx, LUVOIR, X-ray Surveyor, and Far-IR Surveyor).
Points of Consensus, cont.

6. With regards to organization of the HabEx and LUVOIR STDTs, there was a general consensus on the following points:

- There should be two separate science teams and two separate engineering and technology teams.
- The science teams should have significant overlap (common members), and should include significant representation from the planetary science community.
- We should express the following concerns in the report:
 - Exoplanets may get marginalized in the LUVOIR STDT if their representation is too small.
 - The general astronomical community may get fractured if the representation of disciplines is very different between the two STDTs.
- Thus the members of the science teams should be carefully chosen to ameliorate these concerns.
- The teams should meet periodically, including the kickoff meeting.
- There should be a small, independent and unbiased team that is tasked to evaluate the science yield and technical readiness of both mission designs in a consistent and transparent manner.
Points of Consensus, cont.

7. There was a general consensus that probe-class (<~$1B) missions should be studied in advance of the next decadal survey, and that the following missions should be presented in the report as examples of possibly compelling probe-class missions.
 - A starshade for WFIRST–AFTA.
 - A transit characterization mission.
 - An astrometry mission.
ExoPAG Report to Paul Hertz Regarding Large Mission Concepts to Study for the 2020 Decadal Survey

August xx, 2015
Authors

Joint PAG Executive Summary

1. ExoPAG Report on the Four Missions Proposed by Paul Hertz
 1.1 LUVOIR Surveyor
 1.2 The Habitable Exoplanet Finder (HabEx)
 1.3 The Far-IR Surveyor
 1.4 The X-Ray Surveyor
2. Additional Large Missions Considered but Ultimately Rejected for Study
3. Probe-class Missions
4. Suggestions for How to Structure of the STDTs.
5. Conclusions
Reference Material.

- http://cor.gsfc.nasa.gov/copag/rfi/
- http://pcos.gsfc.nasa.gov/physpag/
Detailed Charge, Part 1.

1. Each PAG, under the leadership of its Executive Committee, shall broadly solicit the astronomy and astrophysics community for input to the report in an open and inclusive manner.
 - To accomplish this, each PAG is empowered to envision and use its own process.

2. Each PAG will consider what set of mission concepts should be studied to advance astrophysics as a whole; there is no desire for mission concepts to be identified as “belonging” to a specific Program or PAG.
 - Each PAG shall keep the number of large mission concepts in the set as small as possible.
 - Each PAG is specifically charged to consider modifications and subtractions from the small set, and not just additions.

3. Each PAG shall produce a report, where it shall comment on all large mission concepts in its small set of large missions, including those in the initial small set and those added or subtracted.
 - The PAGs may choose to work together and submit coordinated or joint reports.
Detailed Charge, Part 2.

4. Each PAG may choose to have a face-to-face meeting or workshop in developing its report; said meeting may be scheduled in proximity to an existing community meeting or conference.

5. Although there is no page limit for the report, each PAG shall strive to be succinct.

6. Each PAG shall submit its report in writing no later than two weeks prior to the Fall 2015 meeting of the NAC Astrophysics Subcommittee (meeting schedule not yet known).