Relationships between complex impedance, thermal response, and noise in microcalorimeters and bolometers

> M. A. Lindeman, B. Dirks, M.P. Bruijn, P.A.J. de Korte, R.H. den Hartog, L. Gottardi, R.A. Hijmering, H.F.C. Hoevers, J. van der Kuur, M. L. Ridder

SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA, Utrecht, The Netherlands

First order model

Fit to impedance to find parameters

Use parameters to calculate noise

Complex calorimeters

. . .

$$M_{S} \begin{bmatrix} \Delta I \\ \Delta T \\ \Delta T_{1} \\ \vdots \end{bmatrix} = \begin{bmatrix} V_{JN} + V_{Stimulus} \\ -I_{0}V_{JN} + P_{1} \\ P_{2} \\ \vdots \end{bmatrix}$$
$$M_{S}(\omega) = \begin{bmatrix} Z_{eq} + R_{0}(1 + \beta_{I}) & R_{0}I_{0}\frac{\alpha_{I}}{T} & 0 \\ -R_{0}I_{0}(2 + \beta_{I}) & i\omega C_{1} - P\frac{\alpha_{I}}{T} + G_{11} & G_{12} \\ 0 & G_{21} & iw C_{2} + G_{22} \end{bmatrix}$$

Model and fit to find •Additional thermal couplings •Hanging heat capacities

Similar models

- Two different hypotheses of where extra heat capacity is
- Both described by 3x3 matrix
- Can fit impedance equally well
- Fitting gives about the same α and β
- Produce different noise terms
- Total noise appears to be about the same

Is there a simple relationship between Z, signal, and noise?

- Heat capacities and thermal conductances differ
- The individual phonon noise terms differ between the two models
- However, Z is the same
- The total calculated signal and noise appeared to be the same
- Is this true in general?
- Is there a simple relationship between Z, signal, and noise?

Distinguishable by injecting power into hanging heat capacities

Simplify math to find answer

Equivalent bolometer

- Equivalent in two ways
 - Response to power in the TES is the same
 - Response to noise in the Bias circuit is the same
- Models with same equivalent bolometer have same impedance
- Do they have the same total noise?

Model independent parameters

- α and β are a model independent function Z
- Should be able to get these directly from Z at two frequencies
- No modeling

Circuit analogy to compute noise

Thermal	Electrical
Temperature	Current
Heat capacity	Inductor
Phonon noise	Fluctuating voltage noise
Thermal conductance	Resistance

Fluctuation-dissipation

 For a network of resistors, inductors, and capacitors at the same temperature noise is

 $V = \sqrt{4kTRe[Z]}$

 Want a similar expression for noise in a network capacitances and thermal couplings in a bolometer

Noise in equivalent bolometer

- Assuming that the bath temperature is near the temperature of the TES
- Noise $P_{TN}(\omega) = \sqrt{4k_BT^2 \operatorname{Re}[G_T(\omega)]}$
- Noise is a function of the complex impedance because $G_T(\omega) = \frac{R_0 + Z(\omega)}{R_0 + Z_0} \frac{Z_{\infty} - Z_0}{Z_{\infty} - Z(\omega)} G_0$
- Similar to Johnson noise of resistors
- Can also calculate the Johnson noise of the bolometer from the impedance
- Don't have to know a lot about internal structure of a bolometer to estimate thermal noise

Bath temperature complicates things

- The previous calculation assumed all the elements were at the same temperature
- If TES is at twice bath temperature, <21% error
- If TES is 10% above bath temperate,< 5% error
- Only affects frequencies where external noise dominates
- Closer approximation may be possible

Numerical verification

- Computed noise for a number of different complex models
- Computed noise directly from Z
- They agree

Conclusions

- Found a relationship between impedance, signal and noise
 - Useful for validating calculations and experiments
- Can find α and β without model fitting by measuring impedance
- Difficult to distinguish between models that reproduce the same impedance on the bases of noise measurements
- Detector response also similar between models if absorber is well coupled to TES in the models
- Modeling may not be needed to estimate noise from impedance because it is fairly model independent

