
Object-Oriented Programming I:  
Classes, Attributes, Methods, and Instances



Brief Outline

#0



Brief Outline

• What is object-oriented programming?

#0



Brief Outline

• What is object-oriented programming?

• How do I implement it in Python?

#0



Brief Outline

• What is object-oriented programming?

• How do I implement it in Python?

• Basic examples

#0



Procedural Programming

function1(var1, var2, etc.)	

⇓	


function2(var3,var4,etc.)	

⇓	


function3(var5,var6,etc.)	

⇓	

...	

⇓	


Final Product

#1



Procedural Programming

• This has been the mainstay of much scientific 
programming, and it works well. 	


• But it can get very messy when you have a 
complex program with lots of interacting 
parts	


• Particularly when data has to be shared and 
modified between many functions	


!

#2



What is Object-Oriented 
Programming?

#3



What is Object-Oriented 
Programming?

Answer 1a:  Ask an expert
#3



What is Object-Oriented 
Programming?

Answer 1a:  Ask an expert
#3



What is Object-Oriented 
Programming?

#4



What is Object-Oriented 
Programming?

Answer Ib:  Ask an expert Wikipedia
#4



What is Object-Oriented 
Programming?

Answer Ib:  Ask an expert Wikipedia

Object-oriented programming (OOP) is a 
programming paradigm that uses "objects" – 
data structures consisting of data fields and 
methods together with their interactions – to 
design applications and computer programs. 
Programming techniques may include features 
such as data abstraction, encapsulation, 
modularity, polymorphism, and inheritance.

#4



What is Object-Oriented 
Programming?

#5



What is Object-Oriented 
Programming?

Objects are like animals: they know how to do stuff (like eat 
and sleep), they know how to interact with others (like make 
children), and they have characteristics (like height, weight).

#5



What is Object-Oriented 
Programming?

Objects are like animals: they know how to do stuff (like eat 
and sleep), they know how to interact with others (like make 
children), and they have characteristics (like height, weight).

#5



What is Object-Oriented 
Programming?

Objects are like animals: they know how to do stuff (like eat 
and sleep), they know how to interact with others (like make 
children), and they have characteristics (like height, weight).

Characteristics
Color, Height, Weight

#5



What is Object-Oriented 
Programming?

Objects are like animals: they know how to do stuff (like eat 
and sleep), they know how to interact with others (like make 
children), and they have characteristics (like height, weight).

Characteristics
Color, Height, Weight

Does Things

Eat, Sleep, Growl, Cheer

#5



What is Object-Oriented 
Programming?

Objects are like animals: they know how to do stuff (like eat 
and sleep), they know how to interact with others (like make 
children), and they have characteristics (like height, weight).

Characteristics
Color, Height, Weight

Does Things

Eat, Sleep, Growl, Cheer

Interaction

Parents, siblings, friends

#5



What is Object-Oriented 
Programming?

#6



What is Object-Oriented 
Programming?

An object is a programming structure that allows you to 
group together variables (characteristics) and functions (doing 
things) in one nice, tidy package.  In Python, the blueprint for 

an object is referred to as a class.
#6



What is Object-Oriented 
Programming?

An object is a programming structure that allows you to 
group together variables (characteristics) and functions (doing 
things) in one nice, tidy package.  In Python, the blueprint for 

an object is referred to as a class.

Bear

Variables:  color, height, weight

Functions:  eat, sleep, growl

#6



What is Object-Oriented 
Programming?

Bear

Attributes:  color, height, weight

Methods:  eat, sleep, growl

Within a class, the variables are referred to as attributes and 
the functions are referred to as methods.

#7



What is Object-Oriented 
Programming?

Instances are specific realizations of a class

#8



What is Object-Oriented 
Programming?

Yogi

Attributes:  brown,  1.8 m, 80 kg

Methods:  eat, sleep, growl

Instances are specific realizations of a class

#8



What is Object-Oriented 
Programming?

Yogi

Attributes:  brown,  1.8 m, 80 kg

Methods:  eat, sleep, growl

Instances are specific realizations of a class

Winnie

Attributes:  yellow,  1.2 m, 100 kg

Methods:  eat, sleep, growl

#8



Object Syntax in Python

#9



Object Syntax in Python

class ClassName[(BaseClasses)]:

#9



Object Syntax in Python

class ClassName[(BaseClasses)]:

#9



Object Syntax in Python

class ClassName[(BaseClasses)]:

   “””[Documentation String]”””

#9



Object Syntax in Python

class ClassName[(BaseClasses)]:

   “””[Documentation String]”””

#9



Object Syntax in Python

class ClassName[(BaseClasses)]:

   “””[Documentation String]”””

[Statement1] # Executed only when class is defined

#9



Object Syntax in Python

class ClassName[(BaseClasses)]:

   “””[Documentation String]”””

[Statement1] # Executed only when class is defined
[Statement2] 

#9



Object Syntax in Python

class ClassName[(BaseClasses)]:

   “””[Documentation String]”””

[Statement1] # Executed only when class is defined
[Statement2] 
...

#9



Object Syntax in Python

class ClassName[(BaseClasses)]:

   “””[Documentation String]”””

[Statement1] # Executed only when class is defined
[Statement2] 
...
[Variable1] # “Global” class variables can be defined here

#9



Object Syntax in Python

class ClassName[(BaseClasses)]:

   “””[Documentation String]”””

[Statement1] # Executed only when class is defined
[Statement2] 
...
[Variable1] # “Global” class variables can be defined here

#9



Object Syntax in Python

class ClassName[(BaseClasses)]:

   “””[Documentation String]”””

[Statement1] # Executed only when class is defined
[Statement2] 
...
[Variable1] # “Global” class variables can be defined here

def Method1(self, args, kwargs={}):

#9



Object Syntax in Python

class ClassName[(BaseClasses)]:

   “””[Documentation String]”””

[Statement1] # Executed only when class is defined
[Statement2] 
...
[Variable1] # “Global” class variables can be defined here

def Method1(self, args, kwargs={}):
# Performs task 1

#9



Object Syntax in Python

class ClassName[(BaseClasses)]:

   “””[Documentation String]”””

[Statement1] # Executed only when class is defined
[Statement2] 
...
[Variable1] # “Global” class variables can be defined here

def Method1(self, args, kwargs={}):
# Performs task 1

#9



Bear: Our first Python class

#10



Bear: Our first Python class

>>> class Bear:!
!
!
!
!
!
!
!
!
!

#10



Bear: Our first Python class

>>> class Bear:!
!
!
!
!
!
!
!
!
!

We are defining a new 
class named Bear.  
Note the lack of 

parentheses.  These are 
only used if the class is 

derived from other 
classes (more on this 

next lecture).

#10



Bear: Our first Python class

>>> class Bear:

#10



Bear: Our first Python class

>>> class Bear:
...    print "The bear class is now defined."

#10



Bear: Our first Python class

>>> class Bear:
...    print "The bear class is now defined."
...

#10



Bear: Our first Python class

>>> class Bear:
...    print "The bear class is now defined."
... This print statement is 

executed only when 
the class is defined.

#10



Bear: Our first Python class

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined. This print statement is 

executed only when 
the class is defined.

#10



Bear: Our first Python class

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.

#10



Bear: Our first Python class

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear

#10



Bear: Our first Python class

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear

This statement equates 
the object a to the 
class Bear.  This is 
typically not very 

useful.

#10



Bear: Our first Python class

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear
>>> a

This statement equates 
the object a to the 
class Bear.  This is 
typically not very 

useful.

#10



Bear: Our first Python class

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear
>>> a
<class __main__.Bear at 0x10041d9b0>

This statement equates 
the object a to the 
class Bear.  This is 
typically not very 

useful.

#10



Bear: Our first Python class

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear
>>> a
<class __main__.Bear at 0x10041d9b0>

#10



Bear: Our first Python class

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear
>>> a
<class __main__.Bear at 0x10041d9b0>
>>> a = Bear()

#10



Bear: Our first Python class

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear
>>> a
<class __main__.Bear at 0x10041d9b0>
>>> a = Bear()
>>> a

#10



Bear: Our first Python class

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear
>>> a
<class __main__.Bear at 0x10041d9b0>
>>> a = Bear()
>>> a
<__main__.Bear instance at 0x100433cb0>

#10



Bear: Our first Python class

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear
>>> a
<class __main__.Bear at 0x10041d9b0>
>>> a = Bear()
>>> a
<__main__.Bear instance at 0x100433cb0>

By adding parenthesis, 
we are creating a new 
instance of the class 

Bear.

#10



Attributes: Access, Creation, 
Deletion

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear()

#11



Attributes: Access, Creation, 
Deletion

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear()
>>> a.name

#11



Attributes: Access, Creation, 
Deletion

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear()
>>> a.name

Object attributes are 
accessed with the 

“.” (period) operator

#11



Attributes: Access, Creation, 
Deletion

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear()
>>> a.name
Traceback (most recent call last): Object attributes are 

accessed with the 
“.” (period) operator

#11



Attributes: Access, Creation, 
Deletion

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear()
>>> a.name
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>

Object attributes are 
accessed with the 

“.” (period) operator

#11



Attributes: Access, Creation, 
Deletion

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear()
>>> a.name
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: Bear instance has no attribute 'name'

Object attributes are 
accessed with the 

“.” (period) operator

#11



Attributes: Access, Creation, 
Deletion

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear()
>>> a.name
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: Bear instance has no attribute 'name'

#11



Attributes: Access, Creation, 
Deletion

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear()
>>> a.name
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: Bear instance has no attribute 'name'

(Instance-specific) 
attributes can be 

created and deleted 
outside of the class 

definition

#11



Attributes: Access, Creation, 
Deletion

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear()
>>> a.name
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: Bear instance has no attribute 'name'
>>> a.name = "Oski"

(Instance-specific) 
attributes can be 

created and deleted 
outside of the class 

definition

#11



Attributes: Access, Creation, 
Deletion

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear()
>>> a.name
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: Bear instance has no attribute 'name'
>>> a.name = "Oski"
>>> a.color = "Brown"

(Instance-specific) 
attributes can be 

created and deleted 
outside of the class 

definition

#11



Attributes: Access, Creation, 
Deletion

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear()
>>> a.name
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: Bear instance has no attribute 'name'
>>> a.name = "Oski"
>>> a.color = "Brown"
>>> del(a.name)

(Instance-specific) 
attributes can be 

created and deleted 
outside of the class 

definition

#11



Attributes: Access, Creation, 
Deletion

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear()
>>> a.name
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: Bear instance has no attribute 'name'
>>> a.name = "Oski"
>>> a.color = "Brown"
>>> del(a.name)
>>> a.name

(Instance-specific) 
attributes can be 

created and deleted 
outside of the class 

definition

#11



Attributes: Access, Creation, 
Deletion

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear()
>>> a.name
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: Bear instance has no attribute 'name'
>>> a.name = "Oski"
>>> a.color = "Brown"
>>> del(a.name)
>>> a.name
Traceback (most recent call last):

(Instance-specific) 
attributes can be 

created and deleted 
outside of the class 

definition

#11



Attributes: Access, Creation, 
Deletion

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear()
>>> a.name
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: Bear instance has no attribute 'name'
>>> a.name = "Oski"
>>> a.color = "Brown"
>>> del(a.name)
>>> a.name
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>

(Instance-specific) 
attributes can be 

created and deleted 
outside of the class 

definition

#11



Attributes: Access, Creation, 
Deletion

>>> class Bear:
...    print "The bear class is now defined."
...
The bear class is now defined.
>>> a = Bear()
>>> a.name
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: Bear instance has no attribute 'name'
>>> a.name = "Oski"
>>> a.color = "Brown"
>>> del(a.name)
>>> a.name
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: Bear instance has no attribute 'name'

(Instance-specific) 
attributes can be 

created and deleted 
outside of the class 

definition

#11



Methods: Access, Creation, and 
(not) Deletion

>>> class Bear:
...    print "The bear class is now defined." Methods are defined in 

the same way normal 
functions are (note 

that we will return to 
the self object in a few 

slides)

#12



Methods: Access, Creation, and 
(not) Deletion

>>> class Bear:
...    print "The bear class is now defined."
...    def say_hello(self):

Methods are defined in 
the same way normal 
functions are (note 

that we will return to 
the self object in a few 

slides)

#12



Methods: Access, Creation, and 
(not) Deletion

>>> class Bear:
...    print "The bear class is now defined."
...    def say_hello(self):
...       print "Hello, world!  I am a bear."

Methods are defined in 
the same way normal 
functions are (note 

that we will return to 
the self object in a few 

slides)

#12



Methods: Access, Creation, and 
(not) Deletion

>>> class Bear:
...    print "The bear class is now defined."
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
... 

Methods are defined in 
the same way normal 
functions are (note 

that we will return to 
the self object in a few 

slides)

#12



Methods: Access, Creation, and 
(not) Deletion

>>> class Bear:
...    print "The bear class is now defined."
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
... 
The bear class is now defined.

Methods are defined in 
the same way normal 
functions are (note 

that we will return to 
the self object in a few 

slides)

#12



Methods: Access, Creation, and 
(not) Deletion

>>> class Bear:
...    print "The bear class is now defined."
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
... 
The bear class is now defined.
>>> a = Bear()

Like attributes, 
methods are also 

accessed via the “.” 
operator.  Parentheses 
indicate the method 
should be executed.

#12



Methods: Access, Creation, and 
(not) Deletion

>>> class Bear:
...    print "The bear class is now defined."
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
... 
The bear class is now defined.
>>> a = Bear()
>>> a.say_hello

Like attributes, 
methods are also 

accessed via the “.” 
operator.  Parentheses 
indicate the method 
should be executed.

#12



Methods: Access, Creation, and 
(not) Deletion

>>> class Bear:
...    print "The bear class is now defined."
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
... 
The bear class is now defined.
>>> a = Bear()
>>> a.say_hello
<bound method Bear.say_hello of <__main__.Bear 
instance at 0x100433e18>>

Like attributes, 
methods are also 

accessed via the “.” 
operator.  Parentheses 
indicate the method 
should be executed.

#12



Methods: Access, Creation, and 
(not) Deletion

>>> class Bear:
...    print "The bear class is now defined."
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
... 
The bear class is now defined.
>>> a = Bear()
>>> a.say_hello
<bound method Bear.say_hello of <__main__.Bear 
instance at 0x100433e18>>
>>> a.say_hello()

Like attributes, 
methods are also 

accessed via the “.” 
operator.  Parentheses 
indicate the method 
should be executed.

#12



Methods: Access, Creation, and 
(not) Deletion

>>> class Bear:
...    print "The bear class is now defined."
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
... 
The bear class is now defined.
>>> a = Bear()
>>> a.say_hello
<bound method Bear.say_hello of <__main__.Bear 
instance at 0x100433e18>>
>>> a.say_hello()
Hello, world!  I am a bear.

Like attributes, 
methods are also 

accessed via the “.” 
operator.  Parentheses 
indicate the method 
should be executed.

#12



>>> class Bear:

The __init__ method

__init__ is a special 
Python method.  It is 

always run when a new  
instance of a class is 

created.  

#13



>>> class Bear:
...    def __init__(self, name):

The __init__ method

__init__ is a special 
Python method.  It is 

always run when a new  
instance of a class is 

created.  

#13



>>> class Bear:
...    def __init__(self, name):
...       self.name = name

The __init__ method

__init__ is a special 
Python method.  It is 

always run when a new  
instance of a class is 

created.  

#13



>>> class Bear:
...    def __init__(self, name):
...       self.name = name
...    def say_hello(self):

The __init__ method

__init__ is a special 
Python method.  It is 

always run when a new  
instance of a class is 

created.  

#13



>>> class Bear:
...    def __init__(self, name):
...       self.name = name
...    def say_hello(self):
...       print "Hello, world!  I am a bear."

The __init__ method

__init__ is a special 
Python method.  It is 

always run when a new  
instance of a class is 

created.  

#13



>>> class Bear:
...    def __init__(self, name):
...       self.name = name
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name

The __init__ method

__init__ is a special 
Python method.  It is 

always run when a new  
instance of a class is 

created.  

#13



>>> class Bear:
...    def __init__(self, name):
...       self.name = name
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...

The __init__ method

__init__ is a special 
Python method.  It is 

always run when a new  
instance of a class is 

created.  

#13



The __init__ method

>>> class Bear:
...    def __init__(self, name):
...       self.name = name
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...
>>> a = Bear()

Arguments specified 
by __init__ must be 

provided when 
creating a new instance 

of a class (else an 
Exception will be 

thrown)

#13



The __init__ method

>>> class Bear:
...    def __init__(self, name):
...       self.name = name
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...
>>> a = Bear()
Traceback (most recent call last):

Arguments specified 
by __init__ must be 

provided when 
creating a new instance 

of a class (else an 
Exception will be 

thrown)

#13



The __init__ method

>>> class Bear:
...    def __init__(self, name):
...       self.name = name
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...
>>> a = Bear()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>

Arguments specified 
by __init__ must be 

provided when 
creating a new instance 

of a class (else an 
Exception will be 

thrown)

#13



The __init__ method

>>> class Bear:
...    def __init__(self, name):
...       self.name = name
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...
>>> a = Bear()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: __init__() takes exactly 2 
arguments (1 given)

Arguments specified 
by __init__ must be 

provided when 
creating a new instance 

of a class (else an 
Exception will be 

thrown)

#13



The __init__ method

>>> class Bear:
...    def __init__(self, name):
...       self.name = name
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...
>>> a = Bear()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: __init__() takes exactly 2 
arguments (1 given)
>>> a = Bear(“Yogi”)

Arguments specified 
by __init__ must be 

provided when 
creating a new instance 

of a class (else an 
Exception will be 

thrown)

#13



Scope: self and “class” variables

#14



Scope: self and “class” variables

>>> class Bear:

#14



Scope: self and “class” variables

>>> class Bear:

Class-wide 
(“global”) 

attributes can be 
declared.  It is 

good style to do 
this before the 

__init__ method.

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0

Class-wide 
(“global”) 

attributes can be 
declared.  It is 

good style to do 
this before the 

__init__ method.

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0

They are accessed 
in the same way as 
“instance-specific” 

attributes, but 
using the class 

name instead of 
the instance name.

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):

They are accessed 
in the same way as 
“instance-specific” 

attributes, but 
using the class 

name instead of 
the instance name.

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):
...       self.name = name They are accessed 

in the same way as 
“instance-specific” 

attributes, but 
using the class 

name instead of 
the instance name.

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):
...       self.name = name
...       Bear.population += 1

They are accessed 
in the same way as 
“instance-specific” 

attributes, but 
using the class 

name instead of 
the instance name.

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):
...       self.name = name
...       Bear.population += 1
...    def say_hello(self):

They are accessed 
in the same way as 
“instance-specific” 

attributes, but 
using the class 

name instead of 
the instance name.

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):
...       self.name = name
...       Bear.population += 1
...    def say_hello(self):
...       print "Hello, world!  I am a bear."

They are accessed 
in the same way as 
“instance-specific” 

attributes, but 
using the class 

name instead of 
the instance name.

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):
...       self.name = name
...       Bear.population += 1
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name

They are accessed 
in the same way as 
“instance-specific” 

attributes, but 
using the class 

name instead of 
the instance name.

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):
...       self.name = name
...       Bear.population += 1
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...       print “I am number %i.” % Bear.population

They are accessed 
in the same way as 
“instance-specific” 

attributes, but 
using the class 

name instead of 
the instance name.

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):
...       self.name = name
...       Bear.population += 1
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...       print “I am number %i.” % Bear.population
...

They are accessed 
in the same way as 
“instance-specific” 

attributes, but 
using the class 

name instead of 
the instance name.

#14



Scope: self and “class” variables

>>> class Bear:!
...    population = 0!
...    def __init__(self, name):!
...       self.name = name!
...       Bear.population += 1!
...    def say_hello(self):!
...       print "Hello, world!  I am a bear."!
...       print “My name is %s.” % self.name!
...       print “I am number %i.” % Bear.population!
...!
!
!
!
!
!
!
!
!
!

The self variable is 
a placeholder for 

the specific 
instance of a class.   

Attributes 
referenced to self 

are known as 
“object” attributes. 

#14



Scope: self and “class” variables

>>> class Bear:!
...    population = 0!
...    def __init__(self, name):!
...       self.name = name!
...       Bear.population += 1!
...    def say_hello(self):!
...       print "Hello, world!  I am a bear."!
...       print “My name is %s.” % self.name!
...       print “I am number %i.” % Bear.population!
...!
!
!
!
!
!
!
!
!
!

It should be listed 
as a required 

argument in all 
class methods 

(even if it is not 
explicitly used by 

the method).

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):
...       self.name = name
...       Bear.population += 1
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...       print “I am number %i.” % Bear.population
...

When calling a 
method directly 
from a specific 

instance of a class, 
the self variable is 

NOT passed 
(Python handles 

this for you) 

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):
...       self.name = name
...       Bear.population += 1
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...       print “I am number %i.” % Bear.population
...
>>> a = Bear(“Yogi”)

When calling a 
method directly 
from a specific 

instance of a class, 
the self variable is 

NOT passed 
(Python handles 

this for you) 

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):
...       self.name = name
...       Bear.population += 1
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...       print “I am number %i.” % Bear.population
...
>>> a = Bear(“Yogi”)
>>> a.say_hello()

When calling a 
method directly 
from a specific 

instance of a class, 
the self variable is 

NOT passed 
(Python handles 

this for you) 

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):
...       self.name = name
...       Bear.population += 1
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...       print “I am number %i.” % Bear.population
...
>>> a = Bear(“Yogi”)
>>> a.say_hello()
Hello, world!  I am a bear.

When calling a 
method directly 
from a specific 

instance of a class, 
the self variable is 

NOT passed 
(Python handles 

this for you) 

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):
...       self.name = name
...       Bear.population += 1
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...       print “I am number %i.” % Bear.population
...
>>> a = Bear(“Yogi”)
>>> a.say_hello()
Hello, world!  I am a bear.
My name is Yogi.

When calling a 
method directly 
from a specific 

instance of a class, 
the self variable is 

NOT passed 
(Python handles 

this for you) 

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):
...       self.name = name
...       Bear.population += 1
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...       print “I am number %i.” % Bear.population
...
>>> a = Bear(“Yogi”)
>>> a.say_hello()
Hello, world!  I am a bear.
My name is Yogi.
I am number 1.

When calling a 
method directly 
from a specific 

instance of a class, 
the self variable is 

NOT passed 
(Python handles 

this for you) 

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):
...       self.name = name
...       Bear.population += 1
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...       print “I am number %i.” % Bear.population
...
>>> a = Bear(“Yogi”)
>>> a.say_hello()
Hello, world!  I am a bear.
My name is Yogi.
I am number 1.
>>> b = Bear("Winnie")

When calling a 
method directly 
from a specific 

instance of a class, 
the self variable is 

NOT passed 
(Python handles 

this for you) 

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):
...       self.name = name
...       Bear.population += 1
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...       print “I am number %i.” % Bear.population
...
>>> a = Bear(“Yogi”)
>>> a.say_hello()
Hello, world!  I am a bear.
My name is Yogi.
I am number 1.
>>> b = Bear("Winnie")
>>> b.say_hello()

When calling a 
method directly 
from a specific 

instance of a class, 
the self variable is 

NOT passed 
(Python handles 

this for you) 

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):
...       self.name = name
...       Bear.population += 1
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...       print “I am number %i.” % Bear.population
...
>>> a = Bear(“Yogi”)
>>> a.say_hello()
Hello, world!  I am a bear.
My name is Yogi.
I am number 1.
>>> b = Bear("Winnie")
>>> b.say_hello()
Hello, world!  I am a bear.

When calling a 
method directly 
from a specific 

instance of a class, 
the self variable is 

NOT passed 
(Python handles 

this for you) 

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):
...       self.name = name
...       Bear.population += 1
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...       print “I am number %i.” % Bear.population
...
>>> a = Bear(“Yogi”)
>>> a.say_hello()
Hello, world!  I am a bear.
My name is Yogi.
I am number 1.
>>> b = Bear("Winnie")
>>> b.say_hello()
Hello, world!  I am a bear.
My name is Winnie.

When calling a 
method directly 
from a specific 

instance of a class, 
the self variable is 

NOT passed 
(Python handles 

this for you) 

#14



Scope: self and “class” variables

>>> class Bear:
...    population = 0
...    def __init__(self, name):
...       self.name = name
...       Bear.population += 1
...    def say_hello(self):
...       print "Hello, world!  I am a bear."
...       print “My name is %s.” % self.name
...       print “I am number %i.” % Bear.population
...
>>> a = Bear(“Yogi”)
>>> a.say_hello()
Hello, world!  I am a bear.
My name is Yogi.
I am number 1.
>>> b = Bear("Winnie")
>>> b.say_hello()
Hello, world!  I am a bear.
My name is Winnie.
I am number 2.

When calling a 
method directly 
from a specific 

instance of a class, 
the self variable is 

NOT passed 
(Python handles 

this for you) 

#14



Scope: self and “class” variables

>>> class Bear:!
...    population = 0!
...    def __init__(self, name):!
...       self.name = name!
...       Bear.population += 1!
...    def say_hello(self):!
...       print "Hello, world!  I am a bear."!
...       print “My name is %s.” % self.name!
...       print “I am number %i.” % Bear.population!
...!
>>> a = Bear(“Yogi”)!
>>> a.say_hello()!
Hello, world!  I am a bear.!
My name is Yogi.!
I am number 1.!
>>> b = Bear("Winnie")!
>>> b.say_hello()!
Hello, world!  I am a bear.!
My name is Winnie.!
I am number 2.!

Here the 
population variable 

is incremented 
each time a new 
instance of the 

Bear class is 
created.

#14



Scope: self and “class” variables

>>> class Bear:!
...    population = 0!
...    def __init__(self, name):!
...       self.name = name!
...       Bear.population += 1!
...    def say_hello(self):!
...       print "Hello, world!  I am a bear."!
...       print “My name is %s.” % self.name!
...       print “I am number %i.” % Bear.population!
...!
>>> a = Bear(“Yogi”)!
>>> a.say_hello()!
Hello, world!  I am a bear.!
My name is Yogi.!
I am number 1.!
>>> b = Bear("Winnie")!
>>> b.say_hello()!
Hello, world!  I am a bear.!
My name is Winnie.!
I am number 2.!

When calling 
methods from a 
class, a specific 
instance DOES 

need to be passed.
#14



Scope: self and “class” variables

>>> class Bear:!
...    population = 0!
...    def __init__(self, name):!
...       self.name = name!
...       Bear.population += 1!
...    def say_hello(self):!
...       print "Hello, world!  I am a bear."!
...       print “My name is %s.” % self.name!
...       print “I am number %i.” % Bear.population!
...!
>>> a = Bear(“Yogi”)!
>>> a.say_hello()!
Hello, world!  I am a bear.!
My name is Yogi.!
I am number 1.!
>>> b = Bear("Winnie")!
>>> b.say_hello()!
Hello, world!  I am a bear.!
My name is Winnie.!
I am number 2.!

When calling 
methods from a 
class, a specific 
instance DOES 

need to be passed.

>>> c = Bear("Fozzie")

#14



Scope: self and “class” variables

>>> class Bear:!
...    population = 0!
...    def __init__(self, name):!
...       self.name = name!
...       Bear.population += 1!
...    def say_hello(self):!
...       print "Hello, world!  I am a bear."!
...       print “My name is %s.” % self.name!
...       print “I am number %i.” % Bear.population!
...!
>>> a = Bear(“Yogi”)!
>>> a.say_hello()!
Hello, world!  I am a bear.!
My name is Yogi.!
I am number 1.!
>>> b = Bear("Winnie")!
>>> b.say_hello()!
Hello, world!  I am a bear.!
My name is Winnie.!
I am number 2.!

When calling 
methods from a 
class, a specific 
instance DOES 

need to be passed.

>>> c = Bear("Fozzie")
>>> Bear.say_hello(c)

#14



Scope: self and “class” variables

>>> class Bear:!
...    population = 0!
...    def __init__(self, name):!
...       self.name = name!
...       Bear.population += 1!
...    def say_hello(self):!
...       print "Hello, world!  I am a bear."!
...       print “My name is %s.” % self.name!
...       print “I am number %i.” % Bear.population!
...!
>>> a = Bear(“Yogi”)!
>>> a.say_hello()!
Hello, world!  I am a bear.!
My name is Yogi.!
I am number 1.!
>>> b = Bear("Winnie")!
>>> b.say_hello()!
Hello, world!  I am a bear.!
My name is Winnie.!
I am number 2.!

When calling 
methods from a 
class, a specific 
instance DOES 

need to be passed.

>>> c = Bear("Fozzie")
>>> Bear.say_hello(c)
Hello, I am a bear.

#14



Scope: self and “class” variables

>>> class Bear:!
...    population = 0!
...    def __init__(self, name):!
...       self.name = name!
...       Bear.population += 1!
...    def say_hello(self):!
...       print "Hello, world!  I am a bear."!
...       print “My name is %s.” % self.name!
...       print “I am number %i.” % Bear.population!
...!
>>> a = Bear(“Yogi”)!
>>> a.say_hello()!
Hello, world!  I am a bear.!
My name is Yogi.!
I am number 1.!
>>> b = Bear("Winnie")!
>>> b.say_hello()!
Hello, world!  I am a bear.!
My name is Winnie.!
I am number 2.!

When calling 
methods from a 
class, a specific 
instance DOES 

need to be passed.

>>> c = Bear("Fozzie")
>>> Bear.say_hello(c)
Hello, I am a bear.
My name is Fozzie.

#14



Scope: self and “class” variables

>>> class Bear:!
...    population = 0!
...    def __init__(self, name):!
...       self.name = name!
...       Bear.population += 1!
...    def say_hello(self):!
...       print "Hello, world!  I am a bear."!
...       print “My name is %s.” % self.name!
...       print “I am number %i.” % Bear.population!
...!
>>> a = Bear(“Yogi”)!
>>> a.say_hello()!
Hello, world!  I am a bear.!
My name is Yogi.!
I am number 1.!
>>> b = Bear("Winnie")!
>>> b.say_hello()!
Hello, world!  I am a bear.!
My name is Winnie.!
I am number 2.!

When calling 
methods from a 
class, a specific 
instance DOES 

need to be passed.

>>> c = Bear("Fozzie")
>>> Bear.say_hello(c)
Hello, I am a bear.
My name is Fozzie.
I am number 3.

#14



A Zookeeper’s Travails I

Suppose you are a zookeeper.  You have three	

bears in your care (Yogi, Winnie, and Fozzie), and	


you need to take them to a shiny new 	

habitat in a different part of the zoo.  However, 	

your bear truck can only support 300 lbs.  Can	


you transfer the bears in just one trip? 

#15



A Zookeeper’s Travails I

#16



A Zookeeper’s Travails I

>>> class Bear:

#16



A Zookeeper’s Travails I

>>> class Bear:
...    def __init__(self, name, weight):

#16



A Zookeeper’s Travails I

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name

#16



A Zookeeper’s Travails I

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight

#16



A Zookeeper’s Travails I

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
... 

#16



A Zookeeper’s Travails I

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
... 
>>> a = Bear("Yogi", 80)

#16



A Zookeeper’s Travails I

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
... 
>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)

#16



A Zookeeper’s Travails I

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
... 
>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> c = Bear("Fozzie", 115)

#16



A Zookeeper’s Travails I

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
... 
>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> c = Bear("Fozzie", 115)
>>> my_bears = [a, b, c]

#16



A Zookeeper’s Travails I

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
... 
>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> c = Bear("Fozzie", 115)
>>> my_bears = [a, b, c]

Class instances in 
Python can be 
treated like any 
other data type: 

they can be 
assigned to other 
variables, put in 

lists, iterated over, 
etc.

#16



A Zookeeper’s Travails I

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
... 
>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> c = Bear("Fozzie", 115)
>>> my_bears = [a, b, c]

In iterating over 
my_bears, we are 

assigning the 
temporary variable z 
to Bear instances a, b, 

and c. The weight 
method is accessed 
again with the “.” 

operator.

#16



A Zookeeper’s Travails I

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
... 
>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> c = Bear("Fozzie", 115)
>>> my_bears = [a, b, c]
>>> total_weight = 0

In iterating over 
my_bears, we are 

assigning the 
temporary variable z 
to Bear instances a, b, 

and c. The weight 
method is accessed 
again with the “.” 

operator.

#16



A Zookeeper’s Travails I

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
... 
>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> c = Bear("Fozzie", 115)
>>> my_bears = [a, b, c]
>>> total_weight = 0
>>> for z in my_bears:

In iterating over 
my_bears, we are 

assigning the 
temporary variable z 
to Bear instances a, b, 

and c. The weight 
method is accessed 
again with the “.” 

operator.

#16



A Zookeeper’s Travails I

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
... 
>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> c = Bear("Fozzie", 115)
>>> my_bears = [a, b, c]
>>> total_weight = 0
>>> for z in my_bears:
...    total_weight += z.weight

In iterating over 
my_bears, we are 

assigning the 
temporary variable z 
to Bear instances a, b, 

and c. The weight 
method is accessed 
again with the “.” 

operator.

#16



A Zookeeper’s Travails I

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
... 
>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> c = Bear("Fozzie", 115)
>>> my_bears = [a, b, c]
>>> total_weight = 0
>>> for z in my_bears:
...    total_weight += z.weight
... 

In iterating over 
my_bears, we are 

assigning the 
temporary variable z 
to Bear instances a, b, 

and c. The weight 
method is accessed 
again with the “.” 

operator.

#16



A Zookeeper’s Travails I

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
... 
>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> c = Bear("Fozzie", 115)
>>> my_bears = [a, b, c]
>>> total_weight = 0
>>> for z in my_bears:
...    total_weight += z.weight
... 
>>> total_weight < 300

In iterating over 
my_bears, we are 

assigning the 
temporary variable z 
to Bear instances a, b, 

and c. The weight 
method is accessed 
again with the “.” 

operator.

#16



A Zookeeper’s Travails I

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
... 
>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> c = Bear("Fozzie", 115)
>>> my_bears = [a, b, c]
>>> total_weight = 0
>>> for z in my_bears:
...    total_weight += z.weight
... 
>>> total_weight < 300
True

In iterating over 
my_bears, we are 

assigning the 
temporary variable z 
to Bear instances a, b, 

and c. The weight 
method is accessed 
again with the “.” 

operator.

#16



A Zookeeper’s Travails II

Consider now a (marginally) more realistic	

scenario, where a bear’s weight changes 	


when he/she eats and hibernates

#17



A Zookeeper’s Travails II

Object methods can 
alter other properties 

of the object

#18



A Zookeeper’s Travails II

>>> class Bear:

Object methods can 
alter other properties 

of the object

#18



A Zookeeper’s Travails II

>>> class Bear:
...    def __init__(self, name, weight):

Object methods can 
alter other properties 

of the object

#18



A Zookeeper’s Travails II

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name

Object methods can 
alter other properties 

of the object

#18



A Zookeeper’s Travails II

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight

Object methods can 
alter other properties 

of the object

#18



A Zookeeper’s Travails II

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
...    def eat(self, amount): Object methods can 

alter other properties 
of the object

#18



A Zookeeper’s Travails II

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
...    def eat(self, amount):
...       self.weight += amount Object methods can 

alter other properties 
of the object

#18



A Zookeeper’s Travails II

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
...    def eat(self, amount):
...       self.weight += amount
...    def hibernate(self):

Object methods can 
alter other properties 

of the object

#18



A Zookeeper’s Travails II

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
...    def eat(self, amount):
...       self.weight += amount
...    def hibernate(self):
...       self.weight /= 1.20

Object methods can 
alter other properties 

of the object

#18



A Zookeeper’s Travails II

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
...    def eat(self, amount):
...       self.weight += amount
...    def hibernate(self):
...       self.weight /= 1.20
... 

Object methods can 
alter other properties 

of the object

#18



A Zookeeper’s Travails II

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
...    def eat(self, amount):
...       self.weight += amount
...    def hibernate(self):
...       self.weight /= 1.20
... 
>>> a = Bear("Yogi", 80)

Object methods can 
alter other properties 

of the object

#18



A Zookeeper’s Travails II

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
...    def eat(self, amount):
...       self.weight += amount
...    def hibernate(self):
...       self.weight /= 1.20
... 
>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)

Object methods can 
alter other properties 

of the object

#18



A Zookeeper’s Travails II

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
...    def eat(self, amount):
...       self.weight += amount
...    def hibernate(self):
...       self.weight /= 1.20
... 
>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> c = Bear("Fozzie", 115)

Object methods can 
alter other properties 

of the object

#18



A Zookeeper’s Travails II

>>> class Bear:
...    def __init__(self, name, weight):
...       self.name = name
...       self.weight = weight
...    def eat(self, amount):
...       self.weight += amount
...    def hibernate(self):
...       self.weight /= 1.20
... 
>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> c = Bear("Fozzie", 115)
>>> my_bears=[a, b, c]

Object methods can 
alter other properties 

of the object

#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

Yogi finds several picnic baskets to snack on.
#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

>>> a.weight

Yogi finds several picnic baskets to snack on.
#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

>>> a.weight
80

Yogi finds several picnic baskets to snack on.
#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

>>> a.weight
80
>>> a.eat(20)

Yogi finds several picnic baskets to snack on.
#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

>>> a.weight
80
>>> a.eat(20)
>>> a.weight

Yogi finds several picnic baskets to snack on.
#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

>>> a.weight
80
>>> a.eat(20)
>>> a.weight
100

Yogi finds several picnic baskets to snack on.
#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

>>> a.weight
80
>>> a.eat(20)
>>> a.weight
100

#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

>>> a.weight
80
>>> a.eat(20)
>>> a.weight
100

Winnie eats a large pot of honey, while Fozzie hibernates
#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

>>> a.weight
80
>>> a.eat(20)
>>> a.weight
100
>>> b.eat(10)

Winnie eats a large pot of honey, while Fozzie hibernates
#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

>>> a.weight
80
>>> a.eat(20)
>>> a.weight
100
>>> b.eat(10)
>>> c.hibernate()

Winnie eats a large pot of honey, while Fozzie hibernates
#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

>>> a.weight
80
>>> a.eat(20)
>>> a.weight
100
>>> b.eat(10)
>>> c.hibernate()

#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

>>> a.weight
80
>>> a.eat(20)
>>> a.weight
100
>>> b.eat(10)
>>> c.hibernate()
>>> total_weight = 0

#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

>>> a.weight
80
>>> a.eat(20)
>>> a.weight
100
>>> b.eat(10)
>>> c.hibernate()
>>> total_weight = 0
>>> for z in my_bears:

#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

>>> a.weight
80
>>> a.eat(20)
>>> a.weight
100
>>> b.eat(10)
>>> c.hibernate()
>>> total_weight = 0
>>> for z in my_bears:
...    total_weight += z.weight

#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

>>> a.weight
80
>>> a.eat(20)
>>> a.weight
100
>>> b.eat(10)
>>> c.hibernate()
>>> total_weight = 0
>>> for z in my_bears:
...    total_weight += z.weight
... 

#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

>>> a.weight
80
>>> a.eat(20)
>>> a.weight
100
>>> b.eat(10)
>>> c.hibernate()
>>> total_weight = 0
>>> for z in my_bears:
...    total_weight += z.weight
... 
>>> total_weight < 300

#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

>>> a.weight
80
>>> a.eat(20)
>>> a.weight
100
>>> b.eat(10)
>>> c.hibernate()
>>> total_weight = 0
>>> for z in my_bears:
...    total_weight += z.weight
... 
>>> total_weight < 300
False

#18



A Zookeeper’s Travails II

>>> class Bear:!
...    def __init__(self, name, weight):!
...       self.name = name!
...       self.weight = weight!
...    def eat(self, amount):!
...       self.weight += amount!
...    def hibernate(self):!
...       self.weight /= 1.20!
... !
>>> a = Bear("Yogi", 80)!
>>> b = Bear("Winnie", 100)!
>>> c = Bear("Fozzie", 115)!
>>> my_bears=[a, b, c]

>>> a.weight
80
>>> a.eat(20)
>>> a.weight
100
>>> b.eat(10)
>>> c.hibernate()
>>> total_weight = 0
>>> for z in my_bears:
...    total_weight += z.weight
... 
>>> total_weight < 300
False

As a result, they are too heavy for the truck 
#18



For the remaining skeptics ...

Because of the way Python is set up, you have been 
using object-oriented techniques this entire time!



For the remaining skeptics ...

Because of the way Python is set up, you have been 
using object-oriented techniques this entire time!

Instantiation >>> a = Polygon("Polly")!
(Creating an instance of the class 
Polygon) >>> b = “Polygon”

Types
>>> type(a)!
<type 'instance'>!
>>> type(type(a))!
<type 'type'>

>>> type(b)!
<type 'str'>!
>>> type(type(b))!
<type 'type'>

Methods
>>> a.print_name()!
Hi, my name is Polly.!
>>> a.perimeter()!
0

>>> b.upper()!
POLYGON!
>>> b.replace(“gon”, “wog”)!
Polywog



A More Relevant 
Example: Simple N-body 

Code
OOPI-nbody.ipynb


