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Free-Floating Planets
● Planets without host stars

● Probably form in low numbers as failed stars

● More probably formed through ejections of planets after 
protoplanetary disk dissipation 

● Their mass distribution bears the fingerprints of the 
formation and subsequent evolution of planetary systems

● K2 offers a one-time opportunity to measure their masses



  

The K2 mission



  

K2 Campaign 9

● 80+ day campaign Apr-Jun 2016
● Target Galactic Bulge to search for 

microlensing, ~5 sq deg
● Earth-K2 parallax baseline enables 

mass and distance measurement of 
stars and planets



  

Simulating K2

MaBuLS simulations

● Simulates images

● Generates Microlensing 
events

● Detection criteria

● Fisher Matrix parameter 
estimation



  

Simulating K2



  

K2 Campaign 9

Mass (M
E
) Detections

K2

1000 3.5
300  
(Jupiter)

6.5

100  
(Saturn)

11.9

Total 22



  

How to measure the mass of a free-
floating planet?



  

Parallax & Angular Einstien Radius



  

Finite Source Effects

Lee+09
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Finite Source Effects

Known

Known Angular Diameter
Knowable

Unknown



  

Surface Brightness-Color Relations
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Color

Kervella+04

Measuring the color and extinction gives you the 
angular diameter of the source

e.g.
log θ

LD
 

= 0.0755 (V-K) + 
0.5170 – 0.2 K

Other relations 
for other colors



  

But you must isolate the source
This requires measuring the color of the source while it 
is magnified

Skowron+14 Bennett+14



  

Current Source Color 
Measurements

Jung+14



  

For Free-Floating Planets
There Is No Follow-up



  

Color in Free-Floating Planet Events

● Color cadence needs to be almost as frequent as the 
main survey observations

● Can we achieve this from the ground?

Typical timescales

Jupiter (300 Mearth)      1 days

10 MEarth                                       6 hours

Earth                            2 hours



  

Current options - Dedicated

OGLE
● Chile
● 1.4 deg^2,    1.3 m
● Excellent site

MOA
● New Zealand
● 2.2 deg^2,    1.8 m
● Bad weather/seeing

KMTNet
● Chile, S. Africa, NZ
● 4.0 deg^2,    1.6 m
● Not yet operational



  

Can OGLE do it? 
Not with the current strategy

● Only a small patch of 
the K2 field is 
currently covered at 
high cadence

● Tiling of K2 survey area 
is currently inefficient

● Color cadence: 

10s of days!



  

Can OGLE do it?
A radical strategy

Operations concept
● Requires all but K2 fields 

abandoned
● 5 fields at high cadence
● texp=100s I, 200s V
● 20s overheads
● 2 I exp, 1 V exp
● Color cadence: 

30-46 minutes

This might be 
enough...



  

Current options – Shared Time

DECam
● Chile
● 3 deg^2,    4 m
● Excellent site

VST @ Paranal
● 1 deg^2,       2.6 m

VISTA @ Paranal
● 1.65 deg^2,    4 m
● IR – mismatched with K2

Skymapper @ SSO
● 5.2 deg^2,    1.3 m

HyperSuprimeCam
● 1.77 deg^2,     8 m
● Hawaii
● No fast filter changes



  

DECam for Microlensing

DECam vs OGLE
● ~10x Collecting Area
● >2x Field of View
● Same overheads



  

DECam Operations Concept

● Min 2 fields, up to 4
● texp=20s z', 20s r', 100s g'
● 20s overheads
● Alternate z', r'
● Color cadence: 

r-z 2.5 minutes

g    15 minutes
● Could replace r with wide 

VR filter



  

DECam – Public Data

● Data will be made public on a timescale similar to 
the Kepler K2 date release (raw images). Enabling:
– The development of a larger US microlensing community

– Deep KBO searches (gets colors + orbits)

– Bolometric survey of large M-dwarf flares

– Asteroseismology of bulge blue stragglers

– Transiting planets (maybe, colors)

– Color limb-darkening coefficients in binaries

– What else can you think of...?



  

DECam  vs  OGLE (radical)
Saturn Mass (100 Earth) Free Floating Planet 6.9 Kpc away

Kp = 23.2 g' = 25.6 r' = 22.9 z' = 20.6 V = 24.1 I = 20.9

DECam errors:
piE 4%
ThetaE (g-z) 1%  (0.3 mag)
ThetaE (r-z) 2%  (0.07 mag)

OGLE errors:
piE 23%
ThetaE (V-I) 10%  (0.45 mag)
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DECam errors:
piE 4%
ThetaE (g-z) 1%  (0.3 mag)
ThetaE (r-z) 2%  (0.07 mag)

OGLE errors:
piE 23%
ThetaE (V-I) 10%  (0.45 mag)



  

DECam  vs  OGLE (radical)
10 Earth-mass Free Floating Planet 8 Kpc away

Kp = 20.7 g' = 22.7 r' = 20.4 z' = 18.7 V = 20.4 I = 18.8

DECam errors:
piE 27%
ThetaE (g-z) 14%  (0.53 mag)
ThetaE (r-z) 24%  (0.52 mag)

OGLE errors:
piE 75%
ThetaE (V-I) 133%  (1.47 mag)



  

DECam  vs  OGLE (radical)
Number of Free Floating Planet Detections

● Assumes 5 sq degrees, 5.5 per star (3-3000MEarth),   
dN/dM~M-1.3 (Sumi+11 fit to MOA events) 

● ΔΧ2 > 500 detection by Kepler

● Note that probably optimistic

●

Mass (M
E
) Detections

K2
Mass

K2+OGLE
Measurements

K2+DECam

1000 3.5 ~1.5 ~3.1

300  Jupiter 6.5 ~2.8 ~4.1

100  Saturn 11.9 ~3.0 ~4.9

Total 22 ~7 ~12



  

DECam  vs  OGLE (radical)
DECam gives:

● 50% more mass measurements
● Factor of 4 (median) smaller error bars

than a completely overhauled OGLE survey

●

Mass (M
E
) Detections

K2
Mass

K2+OGLE
Measurements

K2+DECam

1000 3.5 ~1.5 ~3.1

300  Jupiter 6.5 ~2.8 ~4.1

100  Saturn 11.9 ~3.0 ~4.9

Total 22 ~7 ~12



  

Conclusions

● K2 campaign 9, in combination with ground-based 
observations, will enable for the first (and maybe only) 
time definitive measurements of free-floating planet 
masses

● However, these mass measurements require high-cadence 
color measurements, which are difficult to achieve using 
the dedicated microlensing survey telescopes

● DECam on the Blanco is the best microlensing machine in 
the world – we must use it for this never to be repeated 
oppotunity
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