Measuring the Free-Floating Planet Mass Function with K2 & DECam

Sagan Fellow, Ohio State University penny@astronomy.ohio-state.edu

Matthew Penny

Free-Floating Planets

- Planets without host stars
- Probably form in low numbers as failed stars
- More probably formed through ejections of planets after protoplanetary disk dissipation
- Their mass distribution bears the fingerprints of the formation and subsequent evolution of planetary systems
- K2 offers a one-time opportunity to measure their masses

The K2 mission

K2 Campaign 9

- 80+ day campaign Apr-Jun 2016
- Target Galactic Bulge to search for microlensing, ~5 sq deg
- Earth-K2 parallax baseline enables mass and distance measurement of stars and planets

Simulating K2

Simulating K2

Fractional change in flux

K2 Campaign 9

Mass (M _E)	Detections K2	$\begin{array}{c c} 4\\ 3\\ 2\end{array} \end{array} \xrightarrow{0.9}\\ 0.8 \\ 0.7 \\ 0.$
1000	3.5	
300 (Jupiter)	6.5	$\begin{array}{ccc} 0 & 0 \\ -1 & 0 \\ 0.4 & 0 \\ $
100 (Saturn)	11.9	-3 -4
Total	22	
		6 5 4 3 2 1 0 -1 $\ell (deg)$

How to measure the mass of a freefloating planet?

Parallax & Angular Einstien Radius

Finite Source Effects

time [day]

Surface Brightness-Color Relations

Measuring the color and extinction gives you the angular diameter of the source

But you must isolate the source

This requires measuring the color of the source *while it is magnified*

Current Source Color Measurements

For Free-Floating Planets There Is No Follow-up

Color in Free-Floating Planet Events

- Color cadence needs to be almost as frequent as the main survey observations
- Can we achieve this from the ground?

Typical timescalesJupiter ($300 M_{earth}$)1 days $10 M_{Earth}$ 6 hoursEarth2 hours

Current options - Dedicated

OGLE

- Chile
- 1.4 deg^2, 1.3 m
- Excellent site

MOA

- New Zealand
- 2.2 deg^2, 1.8 m
- Bad weather/seeing KMTNet
- Chile, S. Africa, NZ
- 4.0 deg^2, 1.6 m
- Not yet operational

Can OGLE do it? Not with the current strategy

- Only a small patch of the K2 field is currently covered at high cadence
- Tiling of K2 survey area is currently inefficient
- Color cadence: 10s of days!

Can OGLE do it? A radical strategy

Operations concept

- Requires all but K2 fields abandoned
- 5 fields at high cadence
- texp=100s /, 200s V
- 20s overheads
- 2 / exp, 1 V exp
- Color cadence:
 30-46 minutes

This might be enough...

Current options – Shared Time

DECam

- Chile
- 3 deg^2, 4 m
- Excellent site

VST @ Paranal

- 1 deg^2, 2.6 m VISTA @ Paranal
- 1.65 deg^2, 4 m
- IR mismatched with K2 Skymapper @ SSO
- 5.2 deg², 1.3 m
 HyperSuprimeCam
- 1.77 deg^2, 8 m
- Hawaii
- No fast filter changes

DECam for Microlensing

DECam vs OGLE

- ~10x Collecting Area
- >2x Field of View
- Same overheads

DECam Operations Concept

- Min 2 fields, up to 4
- texp=20s z', 20s r', 100s g'
- 20s overheads
- Alternate z', r'
- Color cadence:
 - r-z 2.5 minutes
 - g 15 minutes
- Could replace r with wide VR filter

DECam – Public Data

- Data will be made public on a timescale similar to the Kepler K2 date release (raw images). Enabling:
 - The development of a larger US microlensing community
 - Deep KBO searches (gets colors + orbits)
 - Bolometric survey of large M-dwarf flares
 - Asteroseismology of bulge blue stragglers
 - Transiting planets (maybe, colors)
 - Color limb-darkening coefficients in binaries
 - What else can you think of...?

Saturn Mass (100 Earth) Free Floating Planet 6.9 Kpc away

OGLE errors:

ThetaE (V-I)

23%

10% (0.45 mag)

piE

DECam errors:		
piE	4%	
ThetaE (g-z)	1%	(0.3 mag)
ThetaE (r-z)	2%	(0.07 mag)

Saturn Mass (100 Earth) Free Floating Planet 6.9 Kpc away

10 Earth-mass Free Floating Planet 8 Kpc away

Number of Free Floating Planet Detections

- Assumes 5 sq degrees, 5.5 per star (3-3000M_{Earth}), dN/dM~M^{-1.3} (Sumi+11 fit to MOA events)
- $\Delta X^2 > 500$ detection by Kepler
- Note that probably optimistic

Mass (M _E)	Detections K2	Mass K2+OGLE	Measurements K2+DECam
1000	3.5	~1.5	~3.1
300 Jupiter	6.5	~2.8	~4.1
100 Saturn	11.9	~3.0	~4.9
Total	22	~7	~12

DECam gives:

- 50% more mass measurements
- Factor of 4 (median) smaller error bars

than a completely overhauled OGLE survey

Mass (M _E)	Detections K2	Mass K2+OGLE	Measurements K2+DECam
1000	3.5	~1.5	~3.1
300 Jupiter	6.5	~2.8	~4.1
100 Saturn	11.9	~3.0	~4.9
Total	22	~7	~12

Conclusions

- K2 campaign 9, in combination with ground-based observations, will enable *for the first (and maybe only) time* definitive measurements of free-floating planet masses
- However, these mass measurements require high-cadence color measurements, which are difficult to achieve using the dedicated microlensing survey telescopes
- DECam on the Blanco is the best microlensing machine in the world – we must use it for this never to be repeated oppotunity