Università del Salento and INFN Lecce

"Ennio De Giorgi"

Estimating Orbital Period of Exoplanets in Microlensing Events

Mosè Giordano

19th International Conference on Microlensing
Annapolis, MD
January 20, 2015

Binary Lens with Orbital Motion

The parameters needed to model microlensing events by binary lens with orbital motion are

- Paczyński curve parameters: $t_{0} \quad u_{0} \quad t_{\mathrm{E}} \quad \theta$
- finite source effects: ρ_{\star}
- binary lens: s q
- binary lens with orbital motion: a e i φ

In addition, with small mass ratios q there is the close-wide degeneracy $s \longleftrightarrow s^{-1}$
What if we knew the orbital period of the lenses

$$
P=2 \pi \sqrt{\frac{a^{3}}{G\left(m_{1}+m_{2}\right)}}=2 \pi \sqrt{\frac{a^{3}}{G m_{1}(1+q)}}
$$

independently from a fit?

Geometry of the System

Inverse Ray Shooting

Inverse Ray Shooting (cont.)

Solve the lens equation "backwards"

$$
\zeta=z-\sum_{i=1}^{N} \frac{\varepsilon_{i}\left(z-z_{i}\right)}{\left\|z-z_{i}\right\|^{2}}
$$

Conditions

- source area subdivided in at least 10^{3} pixels
- each pixel on the source plane matches at least 100 pixels on the lens plane
Pros and cons
\checkmark precise, also on caustics
X very slow, high number of photons to be "shot"
\checkmark any lens configuration
x only point-like source

Witt \& Mao Method

Binary-Lens Equation in complex formalism (details?)

$$
\zeta=z+\frac{\varepsilon_{1}}{\bar{z}_{1}-\bar{z}}+\frac{\varepsilon_{2}}{\bar{z}_{2}-\bar{z}}
$$

Put the lenses on points $z_{1}=-z_{2}$ along the real axis $\left(z_{j}=\bar{z}_{j}\right)$

$$
p_{5}(z)=\sum_{i=0}^{5} c_{i} z^{i}=0
$$

Amplification

$$
\mu(\zeta)=\sum_{i=1}^{N}\left|\mu_{i}\right|=\left.\sum_{i=1}^{N} \frac{\pi_{i}}{\operatorname{det} \mathcal{J}}\right|_{z=z_{i}}
$$

Pros and cons
\checkmark fast
X only point-like source
\checkmark any lens configuration
X doesn't work near caustics

Hexadecapole Approximation

Approximation of the amplification function with a Taylor series up to the fourth order

$$
\begin{aligned}
\mu_{\text {finite }}(\rho)= & \frac{2 \pi}{F} \sum_{n=0}^{\infty} \mu_{2 n} \int_{0}^{\rho} S(w) w^{2 n+1} \mathrm{~d} w \\
= & \mu_{0}+\frac{\mu_{2} \rho^{2}}{2}\left(1-\frac{\Gamma}{5}\right) \\
& +\frac{\mu_{4} \rho^{4}}{3}\left(1-\frac{11 \Gamma}{35}\right)+\cdots
\end{aligned}
$$

Pros and cons
\checkmark fast (no amplification map required)
\checkmark extended source
\checkmark any lens configuration and any radial luminosity profile of the source
x far enough from the caustics
Details?

Simulation 1

Simulation 1 (periodogram)

Simulation 2

$$
q=0.8, a=0.23, e=0, i=\varphi=0^{\circ}, P=t_{E} / 3
$$

Simulation 2 (periodogram)

Simulation 3

$$
q=0.8, a=0.23, e=0.5, i=45^{\circ}, \varphi=0^{\circ}, P=2 t_{\mathrm{E}}
$$

Simulation 3 (periodogram)

Fit to Real Data

Event OGLE-2011-BLG-1127/MOA-2011-BLG-322

Conclusions

2 Orbital period of the lenses should be shorter than the Einstein time of the event or we must have a long observational window
Q We fit the observed amplification curve to a simple Paczyński curve, with four easily-guessable free parameters, and then perform a periodogram on the residuals: the period so obtained is the period of the binary system
\triangle We need to remove a very small region around the central peak from the residuals before performing the periodogram
\triangle Periodic feature with the same period far from the peak \Longrightarrow source periodicity (binary system, intrinsic variable, etc...)

Reference

E
A. Nucita, M. Giordano, F. De Paolis, and G. Ingrosso. "Signatures of rotating binaries in microlensing experiments". In: Monthly Notices of the Royal Astronomical Society 438 (Mar. 2014), pp. 2466-2473. Doו: 10. 1093/mnras/stt2363. arXiv: 1401. 6288.

Lens Equation

source plane

Lens Equation

$$
\vec{\beta}=\vec{\theta}-\vec{\alpha} \frac{D_{\mathrm{ds}}}{D_{\mathrm{s}}} \Longleftrightarrow \vec{\eta}=\vec{\xi} \frac{D_{\mathrm{s}}}{D_{\mathrm{d}}}-\vec{\alpha} D_{\mathrm{ds}} \Longleftrightarrow \vec{y}=\vec{x}-\vec{\alpha}
$$

Critic and Caustic Curves

Amplification Matrix

$$
\mathcal{J}_{i j}=\frac{\partial y_{i}}{\partial x_{j}}
$$

Amplification

$$
\mu=\frac{1}{\operatorname{det} \mathcal{J}}
$$

Critic Curves

Locus of the points in the lens plane in which $\mu \rightarrow \infty \Longleftrightarrow \operatorname{det} \mathcal{J} \rightarrow 0$

Caustic Curves

Locus of the points in the source plane in which $\mu \rightarrow \infty \Longleftrightarrow \operatorname{det} \mathcal{J} \rightarrow 0$

Dimensionless Quantities

Einstein Radius

$$
R_{\mathrm{E}}=\sqrt{\frac{4 G M}{c^{2}} \frac{D_{\mathrm{ds}} D_{\mathrm{d}}}{D_{\mathrm{s}}}}
$$

Einstein Angle

$$
\theta_{\mathrm{E}}=\frac{R_{\mathrm{E}}}{D_{\mathrm{d}}}=\sqrt{\frac{4 G M}{c^{2}} \frac{D_{\mathrm{ds}}}{D_{\mathrm{s}} D_{\mathrm{d}}}}
$$

Critical Superficial Mass Density

$$
\Sigma_{\mathrm{cr}}=\frac{\mathrm{c}^{2} D_{\mathrm{s}}}{4 \pi G D_{\mathrm{d}} D_{\mathrm{ds}}}
$$

Complex Formalism

Introduced by Witt (1990)
Complex Coordinates:
Source Plane: $z=x+i y$
Lens Plane: $\zeta=\xi+\mathrm{i} \eta$
Mass Distribution

$$
\Sigma(z)=\sum_{j=1}^{N} m_{j} \delta^{2}\left(z-z_{j}\right)
$$

Lens Equation

$$
\zeta=(1-\kappa) z+\gamma \bar{z}-\sum_{j=1}^{N} \frac{\varepsilon_{j}}{\bar{z}-\bar{z}_{j}}
$$

Critic Curves Parametrization

$$
\sum_{j=1}^{N} \frac{\varepsilon_{j}}{\left(\bar{z}-\bar{z}_{j}\right)^{2}}=(1-\kappa) \mathrm{e}^{\mathrm{i} \varphi}-\gamma
$$

Hexadecapole Approximation: details

Far from the caustics, amplification can be expanded in Taylor series

$$
\mu(\xi, \eta)=\sum_{n=0}^{\infty} \sum_{i=0}^{n} \mu_{n, i}\left(\xi-\xi_{0}\right)^{i}\left(\eta-\eta_{0}\right)^{n-i}
$$

Amplification of an extended source

$$
\begin{aligned}
\mu_{\text {finite }}\left(\rho ; \xi_{0}, \eta_{0}\right) & =\frac{\int_{0}^{\rho} w S(w) \mathrm{d} w \int_{0}^{2 \pi} \mu\left(\xi_{0}+w \cos \theta, \eta_{0}+w \sin \theta\right) \mathrm{d} \theta}{\int_{0}^{\rho} w S(w) \mathrm{d} w \int_{0}^{2 \pi} \mathrm{~d} \theta} \\
& =\frac{2 \pi}{F} \sum_{n=0}^{\infty} \mu_{2 n} \int_{0}^{\rho} S(w) w^{2 n+1} \mathrm{~d} w
\end{aligned}
$$

With linear limb-darkening $\left(S(w)=\left(1-\Gamma\left(1-(3 / 2) \sqrt{1-w^{2} / \rho^{2}}\right)\right) F / \pi \rho^{2}\right)$

$$
\mu_{\text {finite }}\left(\rho ; \xi_{0}, \eta_{0}\right)=\mu_{0}+\frac{\mu_{2} \rho^{2}}{2}\left(1-\frac{\Gamma}{5}\right)+\frac{\mu_{4} \rho^{4}}{3}\left(1-\frac{11 \Gamma}{35}\right)+\cdots
$$

Hexadecapole Approximation: details (cont.)

$$
\begin{aligned}
M_{w,+}= & \frac{1}{4} \sum_{j=0}^{3} \mu\left(\xi_{0}+w \cos (\varphi+j \pi / 2), \eta_{0}+w \sin (\varphi+w \sin (\varphi+j \pi / 2))\right)-\mu_{0} \\
\approx & \frac{1}{4} \sum_{j=0}^{3} \sum_{n=0}^{4} \sum_{i=0}^{n} \mu_{n, i} w^{n}(\cos (\varphi+j \pi / 2))^{i}(\sin (\varphi+j \pi / 2))^{n-i}-\mu_{0} \\
= & \frac{\left(\mu_{4,0}+\mu_{4,4}\right)(3+\cos (4 \varphi))+\left(\mu_{4,3}+\mu_{4,1}\right) \sin (4 \varphi)+\mu_{4,2}(1-\cos (4 \varphi))}{8} \\
& +\mu_{2} w^{2} \\
M_{w, \times}= & \frac{1}{4} \sum_{j=0}^{3} \mu\left(\xi_{0}+w \cos (\varphi+(2 j+1) \pi / 4), \eta_{0}+w \sin (\varphi+w \sin (\varphi+(2 j+1) \pi / 4))\right) \\
& -\mu_{0} \\
\approx & \frac{\left(\mu_{4,0}+\mu_{4,4}\right)(3-\cos (4 \varphi))-\left(\mu_{4,3}+\mu_{4,1}\right) \sin (4 \varphi)+\mu_{4,2}(1+\cos (4 \varphi))}{8} w^{4} \\
& +\mu_{2} w^{2}
\end{aligned}
$$

Hexadecapole Approximation: details (cont.)

Recipe:

- determine amplification on the thirteen points
- use these amplifications to calculate $M_{\rho,+}, M_{\rho, \times}$, and $M_{\rho / 2,+}$
- calculate $\mu_{2} \rho^{2}$ and $\mu_{4} \rho^{4}$ with relations

$$
\begin{aligned}
& \mu_{2} \rho^{2}=\frac{16 M_{\rho / 2,+}-M_{\rho,+}}{3} \\
& \mu_{4} \rho^{4}=\frac{M_{\rho,+}+M_{\rho, \times}}{2}-\mu_{2} \rho^{2}
\end{aligned}
$$

- insert $\mu_{2} \rho^{2}, \mu_{4} \rho^{4}$, and amplification μ_{0} of the central monopole inside equation

$$
\mu_{\text {finite }}\left(\rho ; \xi_{0}, \eta_{0}\right)=\mu_{0}+\frac{\mu_{2} \rho^{2}}{2}\left(1-\frac{\Gamma}{5}\right)+\frac{\mu_{4} \rho^{4}}{3}\left(1-\frac{11 \Gamma}{35}\right)+\cdots
$$

to get the amplification of a finite source

