

The NASA Exoplanet Exploration Program: The Search for Planets, Habitability, and Life in our Galaxy

Stephen C. Unwin Jet Propulsion Laboratory, California Institute of Technology

Deputy Program Scientist NASA Exoplanet Exploration Program January 19-21, 2015

> 19th Annual International Conference on Gravitational Microlensing Annapolis MD

We are particularly interested in those in the Habitable Zone

Where will exploration take us in 100 years? Introducing the *Exoplanet Travel Bureau*

The Exoplanet Exploration Program

NASA Astrophysics Documents

http://science.nasa.gov/astrophysics/documents

What is the Purpose of the Program?

Described in 2014 NASA Science Plan

Exoplanet Exploration Program

- 1. Discovering planets around other stars
- 2. Characterizing their properties
- 3. Identifying candidates that could harbor life

Interdisciplinary Studies of **Exoplanets:**

Crosscutting Work Between the Astrophysics and Planetary Science Divisions

The Exoplanet Exploration Program

The Program relies on the Scientific Community

Active teams and committees:

- ExoTAC (Technology Assessment Committee) Chair: A. Boss, Carnegie Institution
- WFIRST/AFTA SDT (Science Definition Team) Chair: D. Spergel, Princeton University
- STDTs (Science and Technology Definition Team) One each for:
 - Exo-C (Probe Coronagraph) Chair: K. Stapelfeldt, GSFC
 - Exo-S (Probe Starshade) Chair: S. Seager, MIT
- ExoPAG (Program Analysis Group)
 Chair: S. Gaudi, Ohio State University

Key Exoplanet Science Questions

- 1. Discovering Planets: How abundant are exoplanets in our Galaxy?
 - Radial Velocity
 - Transit Photometry
 - Microlensing

- <1 m/s
- < 10 parts per million

< 100 parts per million

- Exoplanet populations and demographics
- 2. Characterizing Planets: What are the (large) exoplanets like?
 - Transit Spectroscopy
 - Direct Imaging
 - High Contrast < 1E-9 (after post-processing)
 - Small Inner Working Angle < 500 mas (<200 mas)
 - Spectroscopy R~40 in visible, near infrared (water lines)
- 3. "Pale Blue Dots": Are the planets habitable? Are there signs of life?

< 1E-10

- Transit Spectroscopy
- **Direct Imaging**
 - High Contrast
 - Small Inner Working Angle
 - Spectroscopy •
 - η_{Earth}
 - Exozodiacal Dust
 - Yield

- < 1 part per million
- (after post-processing)

(biosignature gases)

- < 100 mas (<40mas)
- R~70 in visible, near infrared Quantify, for mission design Quantify, for mission design
- Ideally: dozens of rocky planets

Current Exoplanet Science Missions

Kepler Space Telescope

- **PI:** W. Borucki, NASA Ames Research Center
- Launch Date: March 6, 2009
- Science Data Collection through May 2013
- Final processing of full data set underway

Kepler Closeout

Harvesting the exoplanet yield from the mission

- Already available to Community: Q0-Q16
- Uniform Processing: Q0-Q17 (9.2) ullet
 - Long cadence light curves
 - Short cadence light curves
 - Release notes

Dec 2014 Mar 2015 Jul 2015

- Final Data processing: Q0-Q17 (9.3) ightarrow
 - Light curves Jan 2016
 - Release notes

Aug 2016

WFIRST / AFTA

Wide-Field Infrared Survey Telescope (WFIRST) Astrophysics Focused Telescope Assets (AFTA)

> Goddard Space Flight Center Jet Propulsion Laboratory STScl NExScl

Wide-field Instrument

- H4RG detectors (Qty 18)
- Wavelength: 0.6 to 2.0 micron
- FOV: 0.28 deg^2

Wide-field Instrument Science

- Dark Energy
- Infrared Survey
- Microlensing survey for exoplanets

WFIRST / AFTA Microlensing survey completes the census begun by Kepler

WFIRST / AFTA Coronagraph Direct Imaging of Exoplanet Nearest Neighbors

Coronagraph Instrument

- Imaging and spectra channels
- 0.4 1 µm bandpass
- $\leq 10^{-9}$ detection contrast
- 100 mas inner working angle at 0.4 μm
- R~70

Coronagraph Science

- Imaging and spectroscopy of exoplanet atmospheres down to a few Earth masses
- Study populations of debris disks

Coronagraph will develop the technologies for a future exo-Earth mission

WFIRST Coronagraph images cool gas and ice giants

Probe-Scale studies:

High-Contrast Imaging

Exo-C:

Internal Occulter (Coronagraph)

K. Stapelfeldt, STDT Chair, GSFC

Exo-S:

External Occulter (Starshade)

S. Seager, STDT Chair, MIT

Enabling the Exo-Future:

Technology Development

Technology Development for Coronagraphs

Xinetics

Starshade for a 2.4m telescope

Primary bandpass: 600 – 850 nm Raw contrast: 1 × 10⁻¹⁰ IWA: 100 milliarcsec

35,000 km

2.4 meter telescope

Example of Science from Starshade with 2.4m telescope

- Observe 52 stars in 2 years
- 13 known exoplanets
- 19 HZ targets. Expect
 ~ 2 Earths or Super-Earths
- Can detect sub-Neptunes to Jupiters around all HZ targets and 20 additional stars

Technology Development for Starshades (External Occulters)

Control of Scattered Light

Formation Flying

Petal Prototype

Starshade Deployment

NGAS, Princeton, JPL

Princeton, JPL

Exo-Earths require large telescopes

Stark et al, 2014 For Coronagraphs

- Yield most sensitive to (in order):
 - Telescope diameter
 - Coronagraph inner working angle
 - Coronagraph contrast
 - Coronagraph noise floor
- Also sensitive to η_earth (strong) and exozodical dust (relatively weak)

Formative Era: Large UV-Optical-IR Telescope (LUVOIR)

Optics Deployment and Assy

SiC Active Hybrid Mirror, Xinetics

MOIRE, BATC

Lightweight ULE, ITT

Starlight Suppression Systems

Visible Nuller, GSFC

Pupil Mapping, Univ. Arizona

Starshade NGAS, Princeton, JPL

Formation Flying

Broadband Mirror Coatings

Telescope Mechanical Isolation Systems

The Program Address the Key Questions

Through Science, Advanced Studies, and Technology Development

- 1. Discovering Planets: How abundant are exoplanets in our Galaxy?
 - Radial Velocity
 - Transit Photometry
 - Microlensing
- 2. Characterizing Planets: What are the (large) exoplanets like?
 - Transit Spectroscopy
 - Direct Imaging
- 3. "Pale Blue Dots": Are the planets habitable? Are there signs of life?
 - Transit Spectroscopy
 - Direct Imaging
 - High Contrast
 - Small Inner Working Angle
 - Spectroscopy
 - η_{Earth}
 - Exozodiacal Dust
 - Yield

EPDS

1/1000

Ways to Become Involved

- ExoPAG: SAGs, and SIG
- EPDS initiative
- Program and decadal studies
- Competitive Funding:
 - Exoplanet Research Program (XRP) via ROSES
 - Astrophysics Data Analysis Program (ADAP, supports archival Kepler/K2 research)
 - K2 Guest Observer program
 - Astrophysics Theory Program (ATP)
 - Hubble Guest Observer program (supports exoplanet research)
 - SAT / TDEM (ROSES) for exoplanet technology development

Read more at: <u>http://exep.jpl.nasa.gov</u>

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Acknowledgements

This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

© 2015 Copyright California Institute of Technology Government sponsorship acknowledged