RTModel: automatic fast real-time modelling of microlensing events

Issues in microlensing modelling

- Microlensing is a **non-repeatable** phenomenon
- Data quantity and quality cannot be improved if insufficient.

- The **computational time** of a single model point is long.
- The number of modelling parameters is large.

- There is an **extreme variety** of light curve morphologies.
- Chi square is **wildly sensitive** to small variations in the parameters.

 Many discrete and continuous degeneracies exist.

RTModel

- Since 2011 we have been running our computational platform **RTModel** on our good old 8-core workstation.
- More than 600 events have been modelled in 4 years.

- RTModel automatically responds to anomaly alerts by **ARTEMIS**.
- Data are downloaded and pre-processed.
- Initial conditions are automatically set.
- Downhill fitting is performed and higher order effects are considered.
- Models are automatically displayed on a **public webpage**.
- The total time for a single run is kept within **3** hours.

Basic calculation

- First step: for given lens and source positions, we must compute the gravitational lensing magnification.
- Inverse ray-shooting amounts to shooting back light rays from the observer to the source plane.
- Light rays are counted if they hit the source disk.
- Magnification maps re-usable (save for orbital motion cases). Limb darkening naturally included.

Optimizations are possible.

- We use **contour integration**: boundaries of the images are calculated; area is obtained by Green's theorem.
- Elegant and fast. Limb darkening requires multiple contours.
- Computational time is somewhat less of ms.
- With thousands of points a single lightcurve may exceed one second.

Initial conditions

- **Grid search** might cover the interesting regions of the parameter space,
- but is always redundant and needs sufficiently small steps.

- **Template matching** (*Mao & Di Stefano 1995*) avoids redundancy and promises to be exhaustive.
- More vulnerable to the presence of local minima within a given class.
- Peaks in the datasets are identified and classified by their prominence.
- The two most prominent peaks are matched to the peaks in the templates.
- If there is only one peak in the data, the anomaly alert time is taken as the second "would-be" peak.

Classification of light curves

- The completeness of the template library is of crucial importance for the effectiveness of this approach.
- We have now published **the first complete catalogue of light curves** in equal-mass binary microlensing

(Liebig, D'Ago, Bozza and Dominik arXiv:1501.02219).

- Every peak in a microlensing light curve can be traced to an interaction of the source with a **caustic**:
- Fold crossing
- Cusp crossing
- Fold approach
- **Cusp approach**

$[b_{b} a_{b1} a_{t2}] A_{2}$

Light curve morphologies are classified by their specific sequence of peaks.

The catalogue of light curves

• We have scanned the **parameter space** distinguishing all **regions** corresponding to different morphologies.

- In the equal-mass case, we have identified 73 different morphologies, arising from 232 different regions of the parameter space.
- We can link any observed morphology to the respective regions of the parameter space.
- The classification can be naturally extended to arbitrary mass-ratios.

	Morphology Class	Close	Intermediate	Wide
I	С	outside caustics	outside caustics	outside caustics
		between caustics		between caustics
п	F-F	$[a_{ip1}a_{ip2}], [a_{is1}a_{is2}], [a_{bp1}a_{ip2}], [a_{is1}b_{i}], [a_{bp1}a_{ip1}] \}$	$[a_{i1}a_{i2}], [a_{b1}a_{i2}], [a_{i1}b_{i}], [a_{b1}b_{i}], [b_{b}b_{i}]$	$[a_{b1}b_{r1}], [b_{b1}b_{r1}]$
	CC	$B_{t1}B_{t2}, A_1B_{t1}, A_1C_{tp}, A_1C_{tx}, A_1B_{t2}, C_{tx}B_{t2}$	$B_{t1}B_{t2}, A_1B_{t1}$	$B_{t1}B_{t2}, A_1B_{t1}, B_{b1}D_1, B_{b1}B_{t2}$
	C-C	[A1A2]	[A ₁ A ₂]	-
	C-F	$[a_{ta1}B_{t2}], [A_1a_{tp2}]$	$[a_{e1}B_{e2}], [A_1a_{e2}], [B_{b1}b_e], [A_1a_{e2}]$	$[B_{b1}b_{t1}]$
	ČF-F	$\begin{array}{l} A_1[a_{ip1}a_{ip2}], A_1[a_{bp1}a_{ip2}], [a_{ix1}b_1]B_{l2}, A_1[a_{ix1}b_1], [a_{bp1}a_{ip2}]B_{l2}, \\ [a_{bp1}a_{ip1}]B_{l1}, [a_{a_{1}}a_{a_{2}}]B_{l2}, [a_{a_{1}}a_{ip2}]B_{l2}, [a_{bp1}a_{ip2}]B_{l2}, \\ [a_{bp1}a_{ip1}]C_{ip}, \\ [a_{bp1}a_{ip1}]C_{ip}, \\ [a_{bp1}a_{ip1}]C_{ip}, \\ [a_{bp1}a_{ip1}]C_{ip}, \\ \end{array}$	$\begin{array}{l} A_1[a_{i1}a_{i2}], A_1[a_{b1}a_{i2}], [a_{i1}b_1]B_{i2}, A_1[a_{i1}b_1], [a_{b1}a_{i2}]B_{i2}, [a_{b1}b_1]B_{i2}, \\ B_{b1}[a_{b1}b_1], [a_{b1}a_{i1}]B_{i1}, [a_{i1}a_{i2}]B_{i2}, [a_{b1}b_1]B_{i2}, B_{b1}[b_2b_1] \end{array}$	$ \begin{array}{l} [a_{i1}b_{i1}]B_{i2},A_1[a_{i1}b_{i1}],B_{k1}[a_{k1}b_{i1}],[a_{k1}a_{i1}]B_{i1},[a_{k1}b_{i1}]B_{i2},\\ B_{k1}[b_{k1}b_{i1}],A_1[b_{k1}b_{i1}],[a_{k1}b_{k1}]B_{i2} \end{array} $
ш	F-F-F	$[a_{tx1}b_t a_{tx2}], [a_{bp1}a_{tp1}a_{tp2}]$	$[a_{l1}b_{l}a_{l2}], [a_{b1}a_{l1}a_{l2}], [a_{b1}a_{l1}b_{l}], [b_{b}a_{b1}b_{l}], [a_{b1}a_{l2}b_{l}], [a_{b1}b_{l}a_{l2}]$	$[a_{b1}a_{c1}b_{c1}], [a_{b1}b_{b1}b_{c1}]$
	CF-C	$[N_1a_{ip2}]N_2, C_{bp}[abp1C_{ip}]$	$[A_1a_{t2} A_2, A_1[a_{t1}B_{t2}], [A_1b_t]B_{t2}$	$[A_1b_{t1}]B_{t2}$
	CCC	$B_{b1}A_1B_{c1}, A_1C_{tx}B_{c2}$	$B_{b1}A_1B_{c1}$	$B_{b1}A_1B_{c1}, B_{b1}D_1B_{c2}, A_1B_{c1}B_{c2}, B_{b1}A_1B_{c2}$
	C-F-F	-	$[A_1b_1a_{i2}]$	-
	C C-F	$A_1[C_{ts}b_t]$	-	-
	CF-FC	$\begin{array}{l} A_1[a_{tp1}a_{tp2}]A_2,A_1[a_{bp1}a_{tp2}]A_2,A_1[a_{ts1}a_{ts2}]B_{t2},B_{b1}[a_{bp1}a_{tp2}]B_{t2},\\ B_{b1}[a_{bp1}b_{tp1}]B_{t1},C_{bp}[a_{bp1}a_{tp2}]C_{tp} \end{array}$	$\begin{array}{l} A_1[a_{t1}a_{t2}]A_2, A_1[a_{b1}a_{t2}]A_2, A_1[a_{t1}b_1]B_{t2}, A_1[a_{t1}a_{t2}]B_{t2}, \\ B_{b1}[a_{b1}a_{t2}]B_{t2}, B_{b1}[a_{b1}a_{t1}]B_{t1}, A_1[a_{b1}b_1]B_{t2}, B_{b1}[a_{b1}b_1]B_{t2} \end{array}$	$A_1[a_{t1}b_{t1}]B_{t2}, B_{b1}[b_{b1}b_{t1}]B_{t2}, B_{b1}[a_{b1}a_{t1}]B_{t1}, A_1[a_{b1}b_{t1}]B_{t2}$
	F-FF-F	$[a_{t+1}b_t][b_ta_{t+2}], [a_{bp},a_{tp1}][a_{tp1}a_{tp2}], [a_{bp1},a_{tp1}][a_{t+1}b_t]$	$[a_{t1}b_t [b_ta_{t2}], [a_{b1}a_{t1} [a_{t1}a_{t2}], [a_{b1}a_{t1}] [a_{t1}b_{t}], [b_{b}a_{b1}]] [a_{b1}b_{t}], [a_{b1}a_{t2}] [a_{t2}b_{t}], [a_{b1}b_{t}] [b_{t}a_{t2}]$	$[a_{t1}b_{t1}][b_{t2}a_{t2}], [a_{b1}a_{t1}][a_{t1}b_{t1}], [a_{b1}b_{b1}][b_{b1}b_{t1}], [a_{b1}b_{b1}][b_{t2}a_{t2}]$
	CF-F-F	$[a_{bp1}a_{ip1}a_{ip2}]B_{i2},A_1[a_{ix1}a_{ix2}b_l]$	$[a_{b1}a_{t1}a_{t2}]B_{t2}, [a_{b1}a_{t1}b_{t}]B_{t2}, B_{b1}[a_{b1}a_{t1}b_{t}], A_{1}[a_{t1}b_{t}a_{t2}], A_{1}[a_{b1}b_{t}a_{t2}], B_{b1}[a_{b1}a_{t2}b_{t}]$	$B_{b1}[a_{b1}a_{c1}b_{11}], [a_{b1}b_{b1}b_{c1}]B_{c2}$
IV	F.F.F.F		$[b_b a_{b1} a_{t1} b_t], [a_{b1} a_{t1} a_{t2} b_t], [b_b a_{b1} a_{t2} b_t]$	-
	C-FF-F	-	$[a_{b1}a_{t1}][a_{t1}B_{t2}], [A_1b_t][b_ta_{t2}]$	$[A_1b_{i1}][b_{i2}a_{i2}]$
	F-FČČ	$[a_{bp1}a_{cp1}]C_{ip}B_{c2}, [a_{bp1}a_{cp1}]C_{ix}B_{c2}, A_1C_{tx}[a_{cx1}b_t], A_1C_{tx}[a_{cx2}b_t], [a_{bp1}a_{cp1}]C_{ix}B_{c1}$	-	[a _{b1} b _{b1}]D ₁ B _{c2}
	C-C-C-C	-	-	$[A_1D_1][D_2A_2]$
	F-F C-F	$[a_{bp1}a_{ip1}][C_{isbi}]$	-	-
	C-FCC	-	-	$[A_1b_{c1}]D_1B_{c2}$
	CFCC	$C_{bp}[a_{bp1}C_{lp}]B_{l2}$	-	-

Fitting

- The nightmare of modellers is getting stuck in a local minimum.
- Local minima may exist within each region of the parameter space corresponding to a specific morphology class.
- But the presence of **gaps** in the data may copiously generate **see-saw patterns** in the chi square.

Fitting

- Markov chains have a finite probability (depending on the temperature) to jump out of a local minimum.
- However, they require the calculation of a large number of models from any given initial condition.
- We use a Levenberg-Marquardt algorithm (interpolating between Newton's and steepest descent).
- In order to jump out of local minima, we fill the minima with penalty functions and let the fit roll to the next minimum.

Higher-order effects

- We refine the best static solutions by including annual parallax and orbital motion.
- For **parallax** we start from $\pi_{\perp} = \pi_{\mu} = 0$, which is fine for not too large effects.
- For orbital motion we consider **circular orbits** with arbitrary inclination, parameterized by $(ds/dt)_{t0}$, $(d\alpha/dt)_{t0}$ and $(\omega_z)_{t0}$ starting from zero velocities.
- For comparison and completeness, we also calculate the following models:

PSPL

- PSPL with parallax
- Finite source single lens
- Finite source single lens with parallax
- Binary source
- Binary source with parallax
- Binary source with parallax and orbital motion.

Publication of the results

A webpage at Salerno University is automatically updated with automatically generated plots

http://www.fisica.unisa.it/GravitationAstrophysics/RTModel/2014/RTModel.htm

Events modelled in 2014

Under investigation

About RTModel

Planetary

Event webpage

RTModel Real-Time Microlensing Modelling by Valerio Bozza

Gravitational Physics and Astrophysics

RTModel index

OB140124 Planetary with parallax

Binary lens models						
	ł	$\frac{Model \ L1}{Model \ L1} \chi^2 = 24940.6 g_{OGLE} = 1.00652 \pm 0.412237$				
		s=0.904511±0.0296468 q=0.000750416±0.000129067 u ₀ =-0.250688±0.0589067 θ=1.37125±0.0371881 ρ-=0.0028	8639±0.00637904 t _E =110.8±19.9386 t ₀ =6836.09±0.939892			
	1.	Model L2 x ² =31568.2 g _{OGLE} =0.273378±0.0968608				
		s=0.848728±0.0127707 q=0.000784017±0.00010802 u ₀ =-0.358492±0.0252235 θ=1.34231±0.0148411 ρ-=0.00774	437±0.00423333 t _E =84.7621±3.96241 t ₀ =6834.65±0.253834			
	1	Model L3 x ² =42226.3 g _{OGLE} =-0.766218±0.149419				
	-	s=0.621889±0.0161537 q=0.000768055±0.000107619 u ₀ =-1.00737±0.0554097 θ=1.44582±0.0077895 p+=0.01048	57±0.0187656 t _E =44.1633±2.46143 t ₀ =6836.07±0.137982			
	1	Model L4 x ² =50628. g _{OGLE} =-0.925977±0.208842				
	ł	s=0.476124±0.0187407 q=0.000687306±0.000126724 u ₀ =-1.64594±0.0901404 θ=1.47302±0.0227046 p=0.00001	02768±0.00172343 t _E =31.6863±2.17851 t ₀ =6836.52±1.17103			
	1.	Model L5 χ^2 =127821. g _{OGLE} =-0.289781±0.0915315				
	/	s=0.763874±0.0142947 q=0.000699372±0.000142686 u ₀ =-0.545399±0.0316147 θ=1.2567±0.0218454 p=0.01110	98±0.00310309 t _E =65.3398±4.13722 t ₀ =6830.06±0.412378			
Binary lens models with parallax						
	1	$\frac{Model \times 1}{Model \times 1} = \chi^2 = 24202.1 g_{OGLE} = 5.86314 \pm 1.63923$				
	t	s=0.990599±0.0123037 q=0.000379833±0.000124866 u ₀ =-0.0868334±0.0215884 θ=1.35672±0.066207 ρ-=0.0003 π _⊥ =0.0338196±0.469999 π =-0.215736±0.321811	23885±0.00722684 t _E =289.167±73.734 t ₀ =6836.3±1.32788			

Model pdf file

Maximizing results

- We are moved by the idea that the **science output** of microlensing could be strongly improved, given the potential in the collected data.
- In order to speed-up the analysis and publication of the interesting events, we should make most of the work in a completely automatic way.
- Automatic pipelines and early warning systems are examples working on very large scales.
- Selecting anomalous events for intense follow-up observations is a very delicate task (ARTEMIS).
- Unfortunately, yet most planetary microlensing events are only discovered after the anomaly is over.

Late-alert planets

 Unfortunately, yet most planetary microlensing events are only discovered after the anomaly is over.

Real-time modelling service

- As soon as an anomaly alert is issued, RTModel is able to automatically model the data and find preliminary models.
- Even if the final model may differ from those preliminary ones, the nature of the anomaly can be immediately guessed, ruling out competitors.

Real-time modelling service

- As soon as an anomaly alert is issued, RTModel is able to automatically model the data and find preliminary models.
- Even if the final model may differ from those preliminary ones, the nature of the anomaly can be immediately guessed, ruling out competitors.

14.

14.5

15

16

16.5

17.

Telescope

OGLE

Danish 1.54m

BaseLine

FB/FS

6.51565+0.0846791 2.05691+0.25551

LCOGT SAO A 20.3419±0.157467 -0.0127732±0.126623

16.8089±0.0962466 _0.0103647±0.0610068

OGLE 16.8099±0.298534 2.97617±2.42739

Planetary Probability Indicator

- For ongoing microlensing events we can build a planetary probability.
 - \rightarrow Chi square
 - → Non-negative Blending constraint
 - \rightarrow Source size
 - \rightarrow Parallax
 - → Bayesian arguments
- A quantitative indicator to support follow-up decisions.

To Do!

Facing future challenges

- NASA funded program to develop highly automated modeling code for the analysis of microlensing events.
 <u>PI: Rachel Street</u>, Co-Is: R. Barry, V. Bozza,
 Collaborators.: M. Dominik, K. Horne, M. Hundertmark, Y. Tsapras.
- Build on experience and capabilities of **RTModel**
- Develop the capacity to model microlensing events from WFIRST-AFTA
- Open Source Project: code will be publicly available
- Extensive verification: Data Challenge to test performance against existing packages

- 3yr **post-doctoral position** offered at LCOGT: deadline Feb 1, 2015
- See: lcogt.net/job/post-doc-microlensing jobregister.aas.org/node/50222

I° Vietri Advanced School on Exoplanetary Science Methods of Detecting Exoplanets May 25 - 29, 2015 - Vietri sul Mare, Salerno Italy

www.iiassvietri.it/en/ases2015.html

Direct Imaging Riccardo Claudi INAF - OAP, Italy

Planetary Transit A. Collier Cameron Univ. of St Andrews, UK **Gravitational Microlensing** Andy Gould Ohio State University, USA

Radial Velocity Artie P. Hatzes Thuringian State Observatory, Germany

ASES_2015

Organizing Committee

Luigi Mancini Alessandro Sozzetti Valerio Bozza

