Swallow tails and Butterflies in Triple Lens Systems

K. Daněk and D. Heyrovský

Institute of Theoretical Physics, Charles University, Prague, Czech Republic.

21 January 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

Butterfly and Swallow-tail metamorphoses:

Metamorphoses of caustics Metamorphoses of amplification pattern Metamorphoses under finite source effect

Circumbinary planet system:

Cusp-curve structure Swallowtail metamorphosis - amplification patterns

Two-planets and star system:

Cusp-curve structure Swallowtail metamorphosis - amplification patterns

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The first three elementary caustic metamorphoses

▲ロ → ▲ 圖 → ▲ 圖 → ▲ 圖 → ④ ヘ ()~

Swallowtail caustic metamorphosis: fold

Swallowtail caustic metamorphosis: fold

Swallowtail caustic metamorphosis: swallowtail

Swallowtail caustic metamorphosis: two cusps

Swallowtail caustic metamorphosis: two cusps

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ● ● の Q ()・

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のんで

▲ロ▶ ▲圖▶ ▲画▶ ▲画▶ 三直 - 釣��

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のんで

▲ロト ▲圖ト ▲画ト ▲画ト 三直 …の文(で)

Butterfly caustic metamorphosis: cusp

Butterfly caustic metamorphosis: butterfly

Butterfly caustic metamorphosis: three cusps

Butterfly caustic metamorphosis: three cusps

Butterfly caustic metamorphosis: three cusps

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のんで

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のんで

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ● の Q ()・

Binary star lens: $\mu = 1/2$, Jacobian contours for d=0.2 separation, bold contour correspond to critical curve of d=3.

Binary star lens: $\mu = 1/2$, Jacobian contours for d=0.2 separation, bold contour correspond to critical curve of d=2.

Binary star lens: $\mu = 1/2$, Jacobian contours for d=0.2 separation, bold contour correspond to critical curve of d=1.6.

Binary star lens: $\mu = 1/2$, Jacobian contours for d=0.2 separation, bold contour correspond to critical curve of d=1.0.

Binary star lens: $\mu = 1/2$, Jacobian contours for d=0.2 separation, bold contour correspond to critical curve of d=0.6.

Binary star lens: $\mu = 1/2$, Jacobian contours for d=0.2 separation, bold contour correspond to critical curve of d=0.2.

Scaling method and higher-order catastrophes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Danek K., Heyrovsky D. arXiv:1501.02722 [astro-ph.EP]

Binary star with a planet: cusp-curve structure

Binary star lens: $\mu_1 = \mu_2 = 0.4999$, star separation d=0.2; planet mass $\mu_3 = 0.0001$ and separation d=0.75.

Binary star with a planet: cusp-curve structure

Binary star lens: $\mu_1 = \mu_2 = 0.4999$, star separation d=0.2; planet mass $\mu_3 = 0.0002$ and separation d=1.1.

Circumbinary planet: fold

$$\mu_A = \mu_B = 0.4999,$$

$$\mu_C = 2 \times 10^{-4}$$

$$z_A = 0.0, z_B = 0.2$$

$$z_C = 0.1 + 1.50 \times e^{i\frac{2}{3}\pi}$$

0.07 0.12 0.13 0.08 0.09 0.1 0.11 < 10.14 < ∰ ▶ < ≣ ▶ < ≣ æ

Circumbinary planet: fold

$$\mu_{A} = \mu_{B} = 0.4999,$$

$$\mu_{C} = 2 \times 10^{-4}$$

$$z_{A} = 0.0, z_{B} = 0.2$$

$$z_{C} = 0.1 + 1.25 \times e^{i\frac{2}{3}\pi}$$

æ

Circumbinary planet: two cusps

$$\mu_{A} = \mu_{B} = 0.4999,$$

$$\mu_{C} = 2 \times 10^{-4}$$

$$z_{A} = 0.0, z_{B} = 0.2$$

$$z_{C} = 0.1 + 1.20 \times e^{i\frac{2}{3}\pi}$$

э

< ∃ >

Circumbinary planet: two cusps

$$\mu_{A} = \mu_{B} = 0.4999,$$

$$\mu_{C} = 2 \times 10^{-4}$$

$$z_{A} = 0.0, z_{B} = 0.2$$

$$z_{C} = 0.1 + 1.15 \times e^{i\frac{2}{3}\pi}$$

э

3

Circumbinary planet: two cusps

$$\mu_{A} = \mu_{B} = 0.4999,$$

$$\mu_{C} = 2 \times 10^{-4}$$

$$z_{A} = 0.0, z_{B} = 0.2$$

$$z_{C} = 0.1 + 1.10 \times e^{i\frac{2}{3}\pi}$$

0.07 0.12 0.13 0.08 0.09 0.1 0.11 < <u>0.14</u> э э P

Circumbinary planet: resonant caustic

$$\mu_{A} = \mu_{B} = 0.4999,$$

$$\mu_{C} = 2 \times 10^{-4}$$

$$z_{A} = 0.0, z_{B} = 0.2$$

$$z_{C} = 0.1 + 1.05 \times e^{i\frac{2}{3}\pi}$$

э

< E

Circumbinary planet: resonant caustic

$$\mu_A = \mu_B = 0.4999,$$

$$\mu_C = 2 \times 10^{-4}$$

$$z_A = 0.0, \ z_B = 0.2$$

$$z_C = 0.1 + 1.00 \times e^{i\frac{2}{3}\pi}$$

• = • •

э

э

Star with one planet: cusp-curve structure

Star with one planet: mass ratio $\mu = 10^{-3}$, separation d=1.1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Star with two planets: cusp-curve structure

Star with two planet: mass ratio $\mu_2 = 10^{-3}$, $\mu_3 = 5 \times 10^{-5}$, separation $s_{12} = 1.1$, $s_{23} = 0.875$, angle $\theta_{23} = 0\pi$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Star with two planets: cusp-curve structure

Star with two planet: mass ratio $\mu_2 = 10^{-3}$, $\mu_3 = 5 \times 10^{-5}$, separation $s_{12} = 1.1$, $s_{23} = 0.875$, angle $\theta_{23} = \pi/4$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Two planets: fold

Two planets: fold

$$\mu_A = 0.99895, \mu_B = 10^{-3},$$

 $\mu_C = 5 \times 10^{-5},$
 $z_A = 0.0, z_B = 1.1$
 $z_C = 0.875 \times e^{0.05i\pi}$

æ

500

Two planets: swallow tail vicinity

Two planets: two-cusps

3

Two planets: two cusps

Two planets: entangled caustic(s)

$$\mu_A = 0.99895, \mu_B = 10^{-3},$$

 $\mu_C = 5 \times 10^{-5},$
 $z_A = 0.0, z_B = 1.1$
 $z_C = 0.875 \times e^{0.5i\pi}$

э

Two planets: entangled caustic(s)

Conclusion

- We developed tools of localizing butterfly and swallow-tail catastrophes in parameter space of triple lens.
- We described amplification patterns in vicinity of metamorphosis points.
- Characteristic patterns are distinguishable even before the metamorphoses.
- In planetary system, the metamorphoses occur as first significant change in primary caustic geometry due to planet.

Thank you!

Acknowledgements

This research project was supported by Czech Science Foundation grant GACR P209/10/1318