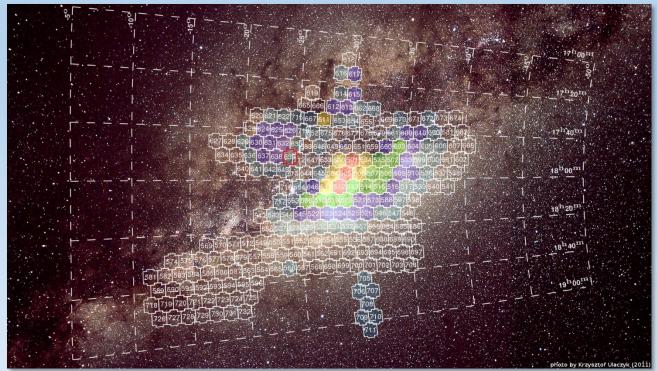
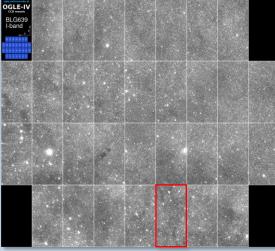
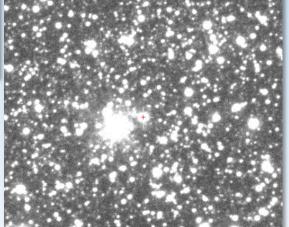
OB131394: The analysis of an ambiguous event

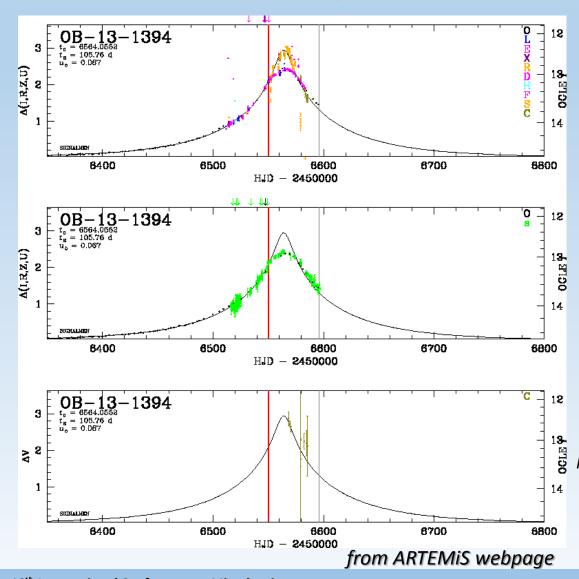
Giuseppe D'Ago


PhD candidate, University of Salerno


Supervisor: Dr. Valerio Bozza



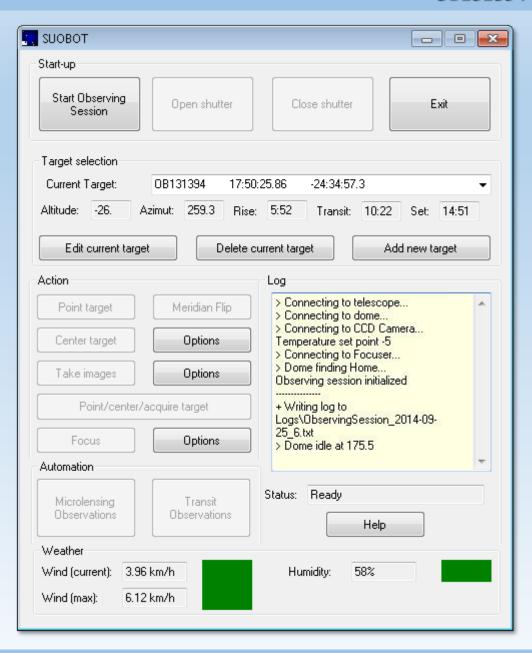
Alerted on Friday July 26th 2013 by the OGLE Early Warning System



Star #7273 in the OGLE-IV BLG639.05 field

RA(J2000.0): 17:50:25.86
 Dec(J2000.0): -24:34:57.3

- Slow evolution
- Anomaly detected on Sun Sept 15th, 2013 at 00:33 UT (2456350.5229 HJD)


- OGLE (2013/2014)
- μ**FUN**:
 - CTIO 1.3m (I, V)
- RoboNet:
 - LCOGT CTIO 1.0m A
 - LCOGT CTIO 1.0m B
 - LCOGT SAAO 1.0m A
 - FTS 2.0m
 - LCOGT SSO 1.0 A
 - LCOGT SSO 1.0 B

Re-reduction of RoboNet data by Markus Hundertmark

- MiNDSTEp:
 - Danish 1.54m Lucky Cam
 - Salerno 0.35m

Followed by Salerno University Observatory (SUO):

- Aug 11th Oct 31st 2013
- 53 nights
- 883 frames

Salerno University Observatory:

- 0.35m telescope
- SBIG ST-2000XM 1600x1200 0.54"/px
- Fully robotic telescope: SUObot
- Pipeline updates the light curve in real-time

2014 Microlensing campaign:

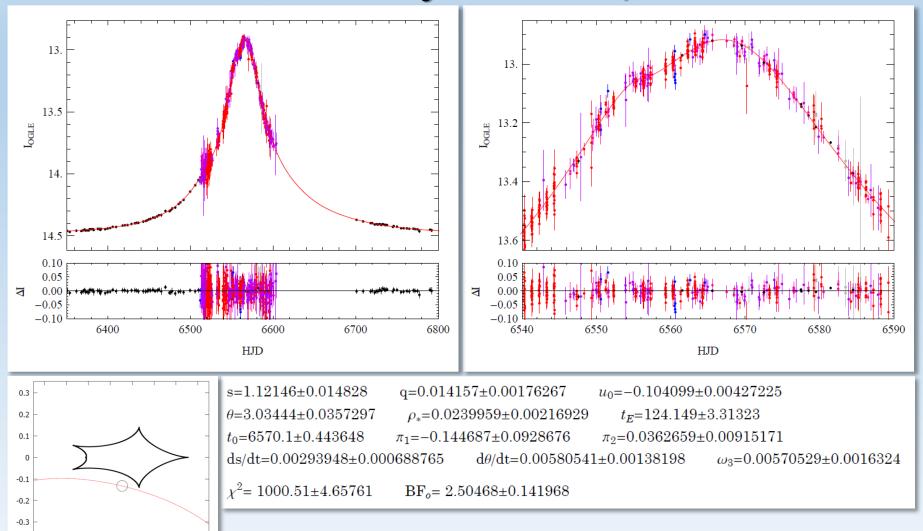
- 105 good nights since April to October
- 29 events followed

OB131394

Real Time Modelling (RTModel by Valerio Bozza \rightarrow Valerio's talk):

- Set of 236 initial conditions
- Downhill fitting with Levenberg-Marquardt algorithm
- The first model was published on the webpage
 http://www.fisica.unisa.it/GravitationAstrophysics/RTModel/2013/RTModel.htm
 on Sep. 15th 2013, at 1:45 UT

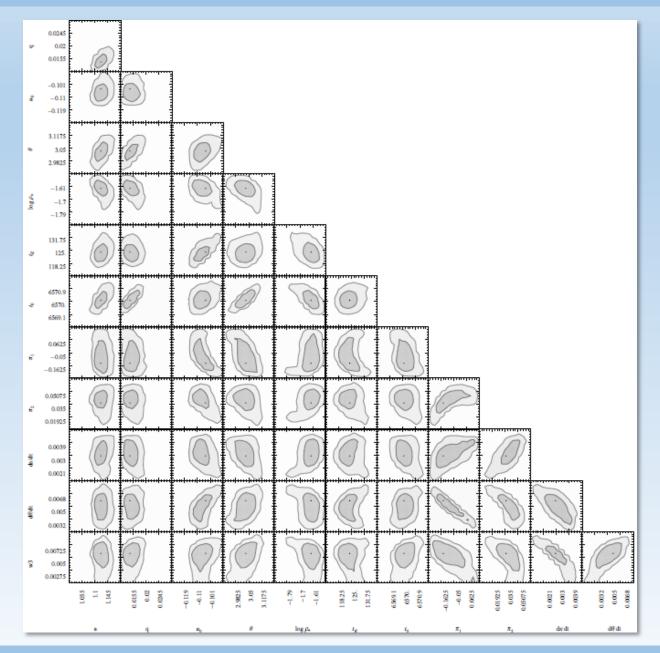
Offline:


- MCMC modelling has been conducted, with a more dense analysis starting from each model resulting from RTModel
- Contour integration code (by Valerio Bozza)
- No need to introduce limb-darkening since the observed lightcurve showed no clear evidence of a caustic crossing
- Long duration event: models taking into account for parallax and orbital motion better fit the data (asymmetric descent)
- Results show two models with the same χ^2 competing

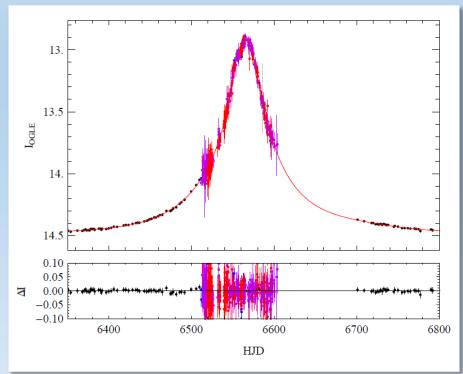
OB131394

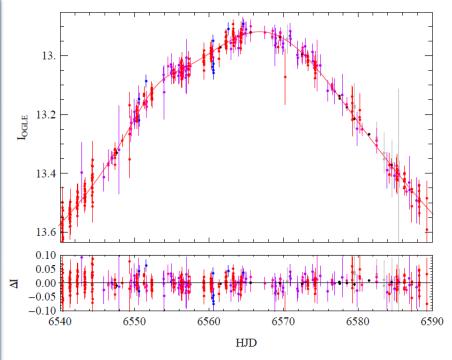
Binary Lens models for OB131394					
	Binary Lens	Parallax	Parallax+Orbital Motion		
s	0.468056 ± 0.008593	0.943417 ± 0.002118	1.121460 ± 0.014828		
q	0.049808 ± 0.003341	0.001241 ± 0.000095	0.014157 ± 0.001763		
u_0	0.105349 ± 0.001915	-0.091602 ± 0.003110	-0.104099 ± 0.004272		
$\theta \text{ (rad)}$	0.586225 ± 0.005269	2.62835 ± 0.01965	3.034440 ± 0.035729		
$ ho_*$	0.000190 ± 0.002706	0.029510 ± 0.001893	0.023996 ± 0.002069		
$t_E ext{ (days)}$	109.096 ± 1.517	166.142 ± 5.380	124.149 ± 3.313		
t_0 (HJD)	6565.24 ± 0.05	6567.00 ± 0.06	6570.10 ± 0.44		
π_{\perp}	_	0.384678 ± 0.010245	-0.144687 ± 0.009152		
π_{\parallel}	_	-0.039048 ± 0.005366	0.036266 ± 0.009152		
ds/dt	_	_	0.002940 ± 0.000689		
$d\theta/dt$	_	_	0.005805 ± 0.001382		
ω_3	_	_	0.005705 ± 0.001632		
f_b/f_s	2.02 ± 0.07	2.87 ± 0.13	2.50 ± 0.14		
χ^2	1118.79 ± 3.18	1066.11 ± 3.84	1000.51 ± 4.48		

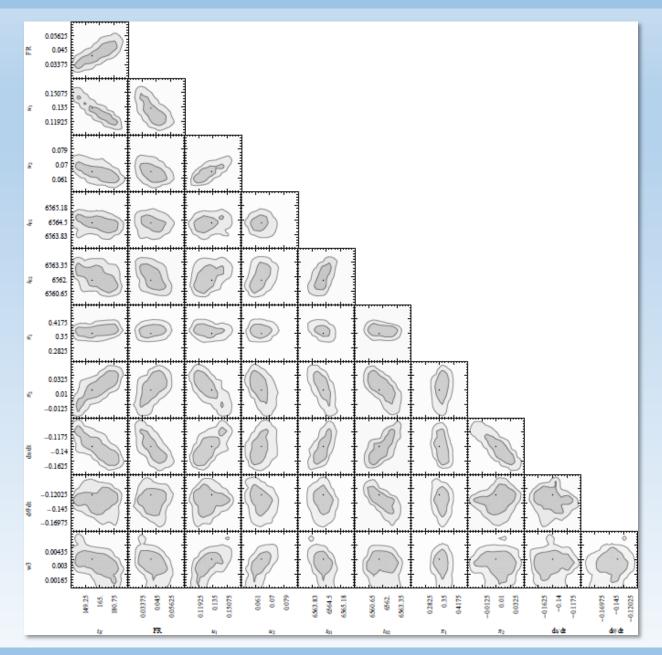
Binary Source models for OB131394					
	Binary Source	Parallax	Parallax+Xallarap		
$t_E ext{ (days)}$	107.42 ± 1.50	168.70 ± 7.96	156.35 ± 10.95		
FR	0.081197 ± 0.008873	0.100580 ± 0.011250	0.040583 ± 0.007214		
u_1	0.120497 ± 0.002588	0.066675 ± 0.003850	0.133596 ± 0.010580		
u_2	0.046823 ± 0.002786	-0.019599 ± 0.003206	0.064698 ± 0.004085		
$t_1 \text{ (HJD)}$	6567.60 ± 0.11	6567.65 ± 0.10	6564.36 ± 0.29		
t_2 (HJD)	6553.15 ± 0.12	6552.12 ± 0.11	6561.65 ± 1.06		
π_{\perp}	_	0.324195 ± 0.012366	0.349086 ± 0.018719		
π_{\parallel}	_	-0.007330 ± 0.005988	0.009685 ± 0.018281		
ds/dt	_	_	-0.140080 ± 0.016256		
$d\theta/dt$	_	_	-0.130280 ± 0.018551		
ω_3	_	_	0.003041 ± 0.000937		
f_b/f_s	1.80 ± 0.07	4.23 ± 0.31	1.69 ± 0.27		
χ^2	1181.30 ± 2.98	1046.32 ± 3.55	1001.90 ± 4.26		


Binary lens: 0.06 M_{\odot} host star + 0.9 $M_{\rm J}$ planet...

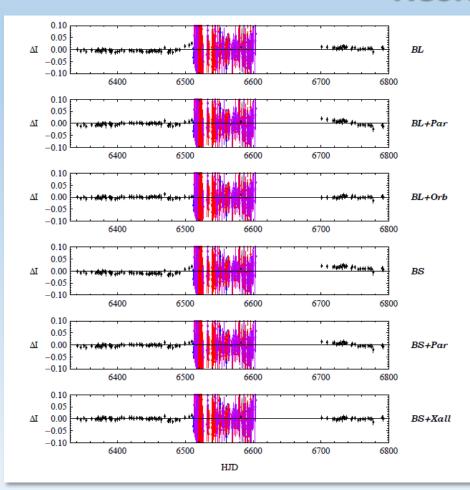
Two bumps due to the cusp grazings

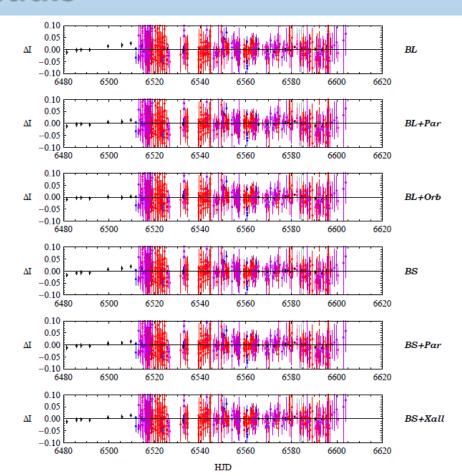

0.2 0.3 0.4

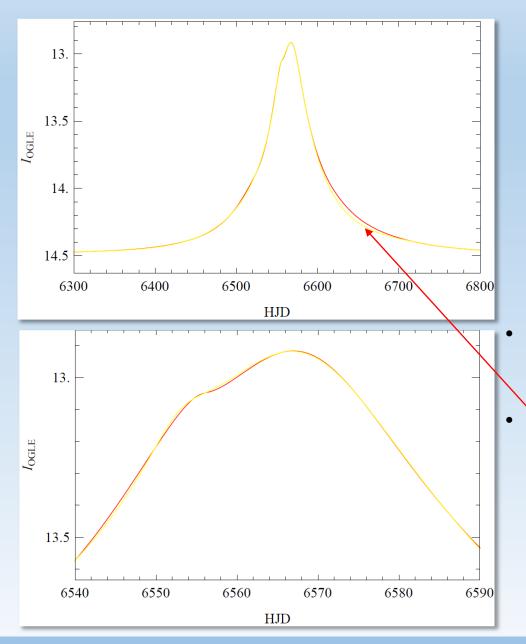

-0.4


OB131394

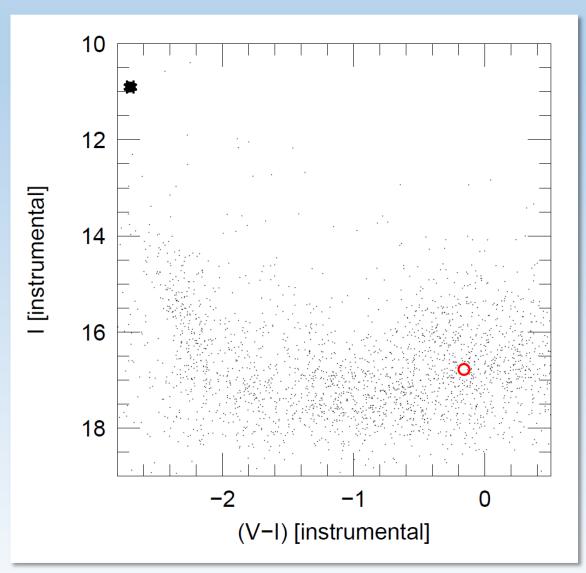
...or a binary source?






$$\begin{array}{lll} t_E \! = \! 156.35 \! \pm \! 10.9521 & \text{FR} \! = \! 0.0405834 \! \pm \! 0.0072141 & u_1 \! = \! 0.133596 \! \pm \! 0.0105805 \\ u_2 \! = \! 0.0646981 \! \pm \! 0.00408477 & t_1 \! = \! 6564.36 \! \pm \! 0.289033 & t_2 \! = \! 6561.65 \! \pm \! 1.05991 \\ \pi_1 \! = \! 0.349086 \! \pm \! 0.0187186 & \pi_2 \! = \! 0.00968502 \! \pm \! 0.0182811 & \text{ds/dt} \! = \! -0.14008 \! \pm \! 0.0162558 \\ \text{d}\theta/\text{dt} \! = \! -0.13028 \! \pm \! 0.0185514 & \omega_3 \! = \! 0.00304081 \! \pm \! 0.00093746 \\ \chi^2 \! = \! 1001.9 \! \pm \! 4.25652 & \text{BF}_o \! = \! 1.69085 \! \pm \! 0.269462 \\ \end{array}$$

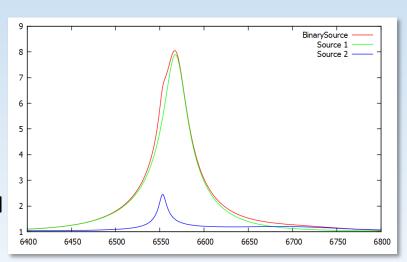
Residuals



Fit comparison:

- Binary Lens + Orbital Motion
- Binary Source + Xallarap
- Biggest difference in the descent

Bright blue source in the foreground disk?


CMD circulated by Andy Gould on Oct 8th, 2013

Spectral analysis (by Ian Thompson)

HJD	V1 (km/s)	V ₂ (km/s)
6579.4925	4.56 ± 0.34	-25.87 ± 0.84
6931.4994	-24.51 ± 0.37	-11.00 ± 1.25

Communication received on Dec 13th, 2014

- Two spectra taken on Oct. 13th, 2013 and Sept. 30th, 2014 (Clay 6.5m Magellan Telescope at Las Campanas)
- Two different peaks in the CCF
- Similar peak strength ratio in the two years
- Probably this is a binary source!
- Another spectrum in June?
 - It is possible to model the magnification of the single components of the binary system using the binary source solution with xallarap: the two bumps are caused by the two components

Conclusions

- Two models competing with the same χ²:
 - Binary lens with planetary mass ratio
 - Binary source
- The long duration of the event made necessary to introduce non-static models:
 - Parallax
 - Orbital motion
 - Xallarap
- The weak but clear anomaly in the light curve can be due to a binary source as suggested by a subsequent spectral analysis
- The analysis conducted on this event draws our attention on the binary source/planetary lens degeneracy:
 - It may be useful to carry deeper analysis on events discarded due to weak anomalies: binary sources contaminate events with no evident caustic signature
 - Spectroscopic or multi-band measurements could reveal planetary lensing hidden behind an ambiguous anomaly
 - Statistical study on past microlensing events?