Coherent mode superposition as the source of complex radio pulsar polarization

Jarek Dyks

Nicolaus Copernicus Astronomical Center
Polish Academy of Sciences
Toruń

Orthogonal jumps of polarisation angle (PA) at maximum V PA flat beyond jumps

B1913+16, Weisberg \& Taylor 2002;
J1900-2600, Johnston \& Kerr 2017

Each polarisation mode exhibits both signs of V

Single pulse (real time) data
Red dots: positive V Green dots: negative V
(Mitra et al. 2015)

Bifurcations and distortions of PA tracks from RVM model (RVM = based on direction of sky-projected B)

Coherent emission of two modes and V in strong B improbable
Possibly mode coupling at polarization limiting radius Cheng \& Ruderman 1979
Mode leaking due to growing scale of intermodal beating
(large w.r.t. scale of medium non-uniformity)

Solution of evolution equation for plasma-wave system necessary

Lyubarsky \& Petrova 1999 - approximate analytical estimates:
constant handedness, symmetrical V/I, or constant V (and handedness) First principle results:

- rough (analytical)
- specific (numerical)

Beskin, Philippov 2012, Petrova, Lyubarsky 2000, Wang, Lai \& Han 2010 - specific numerical results:
one max-V OPM jump at specific viewing angle
Impressive calculi but results bear vague resemblance to the observed polarized profiles

Empirical way: addition (superposition) of OPMs

- noncoherent, selected longitudes, McKinnon 2003, Melrose et al. 2006, Karastergiou 2009
- coherent, single longitude, Kennett \& Melrose 1998, Edwards \& Stappers 2004

The model: coherent sum of orthogonally oscillating sinusoids

- mode amplitude ratio MAR or mixing angle MA
- phase lag PhLg
- eccentricity of polarization ellipse (3 parameters)
+ widths of their statstical distributions (6 parameters)
$\tan (M A)=E 2 / E 1$
$M A=45$ deg $=>E 2=E 1$

Some parameters partially covariant (degenerate), e.g.:

- mode amplitude ratio
- phase lag
- width of phase lag distribution
- peak position of phase lag distribution

Multiple interpretations possible
=> useful to simultaneously consider:

- polarization within a pulse longitude interval
- different frequencies nu
to break the degeneracy
=> additional parameters for pulse-longitude profiles of the basic parameters

Two main effects:

MAR: mode amount ratio (regular OPM jumps)
PhLg: phase lag (quarter-wave plate effects, max-V OPM jumps)

Arecibo, Mitra, Rankin, Arjunwadkar 2016

PA loop with `tongue and horns' + twin minima in L/l
1.5 GHz

MAR inverted several times

No PA bifurcation, U-shaped PA

Multiple interpretations possible: Mixing angle $=\mathbf{f}($ Phi $)$
Phi = pulse longitude
Any PA distortions + twin minima in L/I but no bifurcations

Multiple interpretations possible: phase lag $=f($ Phi \quad longitude-dependent lag

Model works at both nu if $M A=f(n u)$

Features

reproduced:

- PA loop / U-distort.
- twin minima in L/I
- large V/I

HOWEVER:
Missing tongue same lag amplitude needed at both nu

Longitude-dependent mixing angle and phase lag (all other parameters fixed) Phase lag amplitude smaller at high nu

High nu

Longitude-dependent mixing angle and phase lag Phase lag amplitude smaller at high nu

Reproduced features:
PA loop/U, twin min. in L/l, single sign V, relative amount of L / I and V / I at both nu,

same separation of twin minima at both nu, shallower L/I minima at higher nu
5
5

High V from coherent mode superposition

Yellow rim = high circular
$=$ large eccentricity angle (= small eccentricity of polarization ellipse)
(= circularly polarized wave)

What if asymmetric profiles of MAR (mode amount ratio) and PhLg (phase lag) overlap?

Antisymmetric MAR + symmetric PhLg (not perfectly aligned)

Dyks 2019
J0437-4715, 660 MHz, Navarro et al. 1997

45 deg PA jumps: You have two orthogonal things, either one can dominate, whence the 45 degrees?
way out: add the modes coherently

45 deg PA jump

B1919+21 Arecibo 352.81 MHz 1.337 g RM: $-16.500 \mathrm{rod} \mathrm{m}^{-2}$

Conclusions

Coherent mode superposition crucial to understand complex pulsar polarization
Phase lag distribution important (+ mode amplitude ratio)
Peculiar/complex polarization effects can be interpreted geometrically
(all polarization components at more than single nu)
Complex core polarization from both lag-driven and amplitude-driven effects overlapping in the same pulse longitude interval

V from coherent superposition of linear modes
Nu-dependent polarization from phase lag change (and mode ratio change)
=> intrinsically nu-dependent PA => possibility of false RM

Several parameters, a lot of work to do

- probing the parameter space,
- average data fitting (J0437 at different nu),
- single pulse data modelling

Phase lag = 90 deg
psi_in = MA = mixing angle
PA = polarization angle (for coherent sum) determined by direction of ellipse major axis

The same PA for any mixing angle (for any mode amount ratio)

Coherent addition of phase-lagged modes

Orthogonal modes with the same sign of V

Phase lag = pi/2

We observe the coherent sum of modes, not just the modes.
The ellipses are the observed OPMs, not the orange and green waves separately.
Phase lag does not have to be equal to pi/2.
It is enough that the phase lag distribution extends up to pi/2.

Coherent OPM jump at maximum V

mixing angle slowly decreasing with longitude
Ellipse major axis stays vertical (flat PA) despite the vector rotation

Narrowing of phase lag distribution

Equal mode amplitudes
= transition from incoherent to coherent mode mixture

Wide phase lag distr.

Narrow lag distr.

thick solid: PA distr. at fixed longitude

Equal mode amplitudes => mixing angle $=45 \mathrm{deg}$

Preference for equal amount of modes
Circularly-polarized wave entering linearly birefringent medium

Multiple interpretations possible: longitude-dependent lag mix. ang. $=\mathrm{f}(\mathrm{nu})$

Features reproduced:

- PA loop/U-distort.
- twin minima in L/I
- large V/I

