Current Suite of Large GRB-Detecting Missions

- Konus-WIND (launched 1994)
- INTEGRAL (launched 2002)
- Swift (launched 2004)
- Fermi (launched 2008)
- MAXI (launched 2009)
- AstroSAT (launched 2015)
- CALET (launched 2015)
- HXMT (launched 2017)
- [IPN only missions - Messenger, Odyssey]
History of Large GRB Missions

- Have led to the detection of 1000’s of GRBs
- >23k GCN circulars - including follow-up observations
- Focus on detecting faint GRBs over small area of the sky with excellent follow-up or detecting bright GRBs over large area of sky
- GRB detectors - sometimes optimized for GRBs and sometimes secondary science
- Open Questions motivating new missions
 - Gravitational Wave Counterparts
 - Jet Composition - Polarization
 - High-redshift GRBs as probes of cosmic chemical evolution
 - New sub-classes (ultra long, short with extended emission, hyper-energetic, nearby sub-luminous SN-GRBs)
Large Missions

• Benefits:
 • sensitivity/wide FoV - lots of GRBs
 • automated multi-wavelength follow-up observations
 • rapid communications, ample power/mass
 • large teams

• Downsides:
 • cost $€¥₩₨
 • long development timescale
 • large teams
 • requires large space program and/or big international efforts
 • requires well-developed low-risk technologies
SmallSat Missions

- **Benefits:**
 - Short timescale development
 - Low cost $€¥£₩₨
 - Can be used to develop/qualify new technologies
 - Can be build by students/universities without significant space hardware experience
 - Lots of commercial off the shelf components
 - Small teams

- **Downsides:**
 - Mass/power limitations
 - Rapid communications is harder
 - Small teams
Future Large GRB-Detecting Missions

- SVOM (launch 2021)
- ISS-TAO (pending down-select in 2019, launch 2022)
- Einstein Probe (launch 2023)
- TAP (pending US Decadal Survey, launch ~2028)
- AMEGO (pending US Decadal Survey, launch ~2028)
- Nimble (NASA SMEX concept, launch ~2025)
- THESEUS (pending down-select in 2021, launch 2032)
- Others?
Transient Astrophysics Observatory on the ISS (ISS-TAO)

- Mission of Opportunity (MoO) proposed in 2016, currently in Phase A study
- ISS payload designed for ELC-3 inboard port
- ISS benefits and challenges
 - ample power, continuous uplink/downlink 87% of the time, sufficient data rates
 - complicated background, field of regard
- Instruments
 - Gamma-ray Transient Monitor (GTM)
 - Wide-field Imager (WFI)
- Operations:
 - Sky Survey & Target of Opportunity
 - Rapid (4 deg/s) autonomous repointing to new transients
- 2 year mission (5 year goal)
- launch in early-2022
Einstein Probe

- Small Chinese Mission to launch by end of 2022
- Lobster micro-channel plate optics with CMOS focal plane (x12)
 - 0.5-4 keV
 - 3600 deg² FoV
- Follow-up X-ray Telescope (0.5-10 keV)
- X-ray transient discovery mission
- Rapid localization and follow-up
- http://ep.bao.ac.cn/
SVOM

- See Stéphane Schanne’s talk tomorrow
- GRB detection and multi-wavelength follow-up mission
Nimble

- NASA SMEX Concept – in preparation for anticipated 2019 call for proposals
- Science goals:
 - Detect gamma-ray and UV/optical/IR GW counterparts
 - Characterize exoplanet atmospheres
- Instruments
 - High-energy All-Sky Monitor (HAM)
 - Gamma-ray scintillator (GBM/BurstCube-like)
 - Small UV Optical IR telescope (SUVOIR)
 - Wide field 20 cm telescope with 18 square deg field of view
 - Narrow field 30 cm telescope with UV/Optical and Optical/IR channels with filters and grism to provide broadband photometry and low-resolution spectroscopy
- Sun-synchrotronous orbit (thermal considerations) - ~30-50% of sky accessible with rapid slewing and autonomous follow-up of HAM triggers or uploaded TOOs
- PI: Josh Schlieder (GSFC)
Transient Astrophysics Probe (TAP)

- Awarded one of the 2017 NASA Probe Concept Studies
 - To be submitted to 2020 Decadal Survey
- 4 Instruments
 - Wide Field Imager (WFI)
 - X-ray Telescope (XRT)
 - Infrared Telescope (IRT)
 - Gamma-ray Transient Monitor (GTM)
- Launch in late-2020’s
- Rapidly slewing spacecraft will autonomously detect and follow-up transients and variable sources, and conduct all-sky survey
- L2 orbit with 85% of sky viewable at any time
- For more information: https://asd.gsfc.nasa.gov/tap/
All-sky Medium Energy Gamma-ray Telescope (AMEGO)

- NASA Probe mission concept to be submitted to US Decadal Survey
- Double-sided silicon strip tracker, CZT & CsI calorimeters, ACD
- 200 keV – 10 GeV
- Compton & Pair Telescope viewing ~20% of sky surveying entire sky over 2 orbits (like LAT)
- Many sources have peak spectra in MeV band (AGN, pulsars, GRBs) – sensitive instrument needed to understand emission processes
- If GW-GRBs are under-luminous, AMEGO will be far more sensitive than scintillator instruments
- Launch in late 2020’s
- PI: Julie McEnery (GSFC)
- https://asd.gsfc.nasa.gov/amego/
Transient High-Energy Sky & Early Universe (THESEUS)

- Selected for ESA Phase A, downselect in 2021, launch 2032
- Instruments
 - X-Gamma rays Imaging Spectrometer (XGIS, 2 keV – 20 MeV)
 - Soft X-ray Imager (SXI, 0.3 – 6 keV)
 - InfraRed Telescope (IRT, 0.7 – 1.8 μm)
- Low Earth Orbit
- Rapid Response Capability
- Science: High-energy transients, high-z GRBs
- https://www.isdc.unige.ch/theseus/
Current & Future Missions
Science Case for GRB-Detecting SmallSats

- Don’t miss the rare event -> all sky coverage
 - Gravitational Wave Counterparts
 - High-z GRBs
 - Ultra-long GRBs
 - Neutrino counterparts? FRB counterparts?
- Rapid communications?
- Simpler systematic effects
- Low cost access to space
- Help to filter huge expected increase in transients from optical/radio surveys
Gravitational Wave Counterparts

- GRBs provide independent coincident (within seconds) detections for on-axis events
 - GRBs can confirm single GW detector events which would otherwise not be reported
 - GRB detection could elevate sub-threshold GW signals, essentially increasing GW range
 - Joint GW+GRB localizations (blob+banana = smaller banana)
 - Especially as GW events are detected further, optical counterparts will be harder to find

- Concerns
 - Are nearby short GRBs bright enough to be detected out to GW horizon?
 - How on-axis do they have to be to be detectable?
 - Could there be short GRB counterparts to NS-BH or BH-BH mergers?
Gravitational Wave Counterparts

• Prospects for Future joint GRB-GW science
 • Better constraints on speed of gravity
 • Independent measure of Hubble Constant could help resolve SN Ia / CMB disagreement
 • GRB emission mechanisms, jet composition, jet structure
 • Neutron star equation of state
 • Role of magnetars
• Coming soon: Prospects for joint GW-GRB science - Eric Burns et al. in-prep
Time Domain Astronomy Coordination Hub (TACH)

• New initiative at NASA Goddard building upon community resources we already provide to address the needs of the multi-messenger/multi-wavelength transient deluge coming in the next decade
 • Improvements to GCN (add reliability with mirror sites, improved coincident source searches)
 • New realtime HEASARC database that ingests GCN & other public data streams to easily cross-correlate and be queryable by community
 • Provide infrastructure to do joint localizations with multiple GRB-detecting satellites
 • How can TACH help serve our community?
TACH
Summary

• Let’s keep building Large GRB Missions

• Let’s build GRB SmallSats

• Let’s coordinate our efforts to get the most out of those SmallSats

• Let’s be ready to make the big discoveries of the next decade