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Context: GW170817/GRB170817A

● Neutron Star mergers produce short duration gamma-ray bursts (GRB)
● GW170817/GRB170817A is the first confirmation, though it may be a rare 

unusual event (very nearby)
● A kilonova was detected in a galaxy at 40 Mpc 11 hours post merger and 

monitored for weeks in the X-ray, UV, Optical, IR, and Radio
● The resulting light curves and spectroscopic time series revealed BNS 

mergers are the likely source of heavy r-process elements
● More than 70 papers were published! Multi-messenger detection leads to a 

new era of astrophysics
● The three missions I’m about to highlight all advance our knowledge of these 

events
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BurstCube
A CubeSat for 

Gravitational Wave 
Counterparts
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BurstCube Science

● BurstCube will increase the sky coverage 
and provide localizations for short (<2 s) 
GRBs, especially important in the current 
era of GW discoveries.

● BurstCube will study GRBs (long and short) 
from the entire unocculted sky
○ Providing spectra, localization, and light curves

● BurstCube will also detect solar flares, 
magnetar flares, and other hard X-ray 
transients, as well as persistent sources via 
occultation analysis
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Mission Implementation
● BurstCube is a 6U CubeSat
● Instrument Package

○ 4 CsI scintillator crystals coupled to arrays of low-power Silicon 
Photomultipliers (SiPMs) with custom electronics

○ Localizes GRBs based on relative intensities in each detector.

● BurstCube will observe the full unocculted sky by 
zenith pointing, recording gamma-ray photons, and 
triggering on significant rate fluctuations.

● BurstCube will relay data to the ground every 2-12 
hours.

● Trigger data will be immediately transferred to the 
ground via the GlobalStar network or TDRS (TBD).

● The instrument hardware and flight and ground software 
design relies heavily upon heritage from Fermi-GBM. 7



Mission Performance
● Continuous Science Operations
● Detect ~24 sGRBs/year

○ Including ~1 coincident sGRB-GW/yr
○ Large increase from not having BurstCube

● Detect > 100 long GRBs/yr
○ Will result in a significant increase in statistics.

● BurstCube is funded and will fly in 2021.
○ In preliminary design now

● The ultimate configuration of BurstCube would 
be a set of ~5 CubeSats (12U) providing 
all-sky coverage for a very low cost.
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Effective area is 67% that of the 
larger GBM NaI detectors at 100 

keV and 15 degree incidence.



Towards a Network...

https://asd.gsfc.nasa.gov/conferences/grb_nanosats/
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Nimble:
The Time Domain 

Explorer
PI: Joshua Schlieder (NASA/GSFC)

(abstruse GSFC codes included on purpose)
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Gong (550), Mike McElwain (667), Eric Lopez (693), Giada Arney 

(693), Jeremy Perkins (661), Allison Youngblood (667), Shawn 
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Julie McEnery (661), Sarah Logsdon (667)



The Reason to be Nimble: GW170817/GRB170817A
● NASA’s Fermi detected the GRB and Swift, Hubble, and Chandra were key to the 

characterization of the kilonova
○ These missions are all in their extended phases

○ Were designed >15 years ago

● Knowing what we know now, how would we design a mission to detect and 
characterize binary neutron star mergers?
○ 1. Detect and localize GRBs
○ 2. Detect and localize kilonova emission
○ 3. Multiwavelength follow-up to monitor and characterize kilonova
○ 4. Space craft with rapid communication and slew capability

● A single well designed facility could do the work of dozens with improved results
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Nimble Executive Summary
● Nimble is a SMEX concept that will detect and localize gamma-ray bursts associated 

with gravitational wave events, rapidly slew to identify their counterparts, and perform 
detailed multiwavelength follow-up for characterization

● Nimble builds on the heritage of Swift and Fermi and leverages technology from JWST 
and BurstCube to provide a new and flexible mission in the era of multi-messenger 
astrophysics

● Nimble has two instruments
a.  High-Energy All-Sky Monitor (HAM) - CsI scintillators with Silicon photomultipliers 

i. GRB light curves and rough localization
b. Small UV-Optical-IR Telescope (SUVOIR) - 30 cm telescope with wide and narrow field capabilities

i. Wide field for detection and localization of GRB counterparts

ii. Narrow field for detailed multiwavelength characterization
● Nimble is optimized for EM counterparts to GW events, but the multiwavelength nature 

of multi-messenger science makes it a flexible mission capable of broad science



Nimble Concept of Operations
Prompt detection and rapid follow-up of high energy 
transients - focus on EM counterparts to gravitational wave 
events

High-energy All-sky Monitor (HAM)
● Similar to GBM/BurstCube

○ CsI scintillation crystals with silicon 
photo-multiplier (SiPM) detector 
arrays

○ ~100-1000 keV energy sensitivity
○ 5 deg radius localization
○ Continuously monitor large portion 

of sky for gamma-ray transients
Small UV-Opt-IR Telescope (SUVOIR)

● 30 cm aperture
● Wide and Narrow field modes
● 2 channels - UV/Opt, Opt/IR

○ 250 - 2500 nm wavelengths



Nimble Secondary Science 
(or ‘why is an exoplanet scientist leading this mission?’)
● (Full Transparency: I think exoplanets are cool)
● Characterize Known Transiting Exoplanets

○ Multiwavelength transit photometry
■ Confirm and characterize known exoplanets in the era of TESS

○ UV to IR exoplanet transit spectroscopy
■ How does atmospheric temperature, structure, and composition change with planet 

properties?
■ What are the roles of clouds and hazes?
■ How does stellar activity affect the interpretation of atmosphere measurements?

● High energy transients 
○ (basically all of the secondary science mentioned for the BurstCube mission)

●
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Why Look in the MeV Range?

EGRET All-Sky Map Above 100 MeV

~300 Sources Detected
Credit: EGRET Team
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Fermi-LAT All-Sky Map Above 1 GeV
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Guaranteed Discovery Space
The MeV range is prime discovery space.

It is a key piece to the high-energy view of the Universe.

Note: Fermi-LAT optimized for 1 GeV

Achievable: Orders of magnitude improvement
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AMEGO will provide a well rounded portfolio of capabilities 24



Binary NS Mergers with AMEGO: sGRBs

● AMEGO joint GW-GRB Detections
○ Upgraded 2nd generation interferometers: ~20 joint detections/year (prompt)
○ Upgraded 3rd generation interferometers: ~80 joint detections/year (prompt)
○ Additional follow-up detections (afterglow)
○ Provide reasonable localizations for follow-up at other wavelengths 

● AMEGO Detections of sGRBs:
○ AMEGO should detect the prompt 

emission of ~80 sGRBs/year
○ AMEGO should be capable of detecting 

sGRB afterglows (even if not in FoV at 
event time)



BNS Mergers: AMEGO and GWs
● Population level studies on:

○ Heavy element enrichment over the history of 
the universe

○ How, when, and why relativistic jets form, and 
their collimation and structure

○ The brightness of SGRBs and kilonovae as a 
function of progenitor mass and spin, inclination 
angle, etc

● If that isn’t enough:
○ ~deg localization for broad-band 

electromagnetic follow-up
○ AMEGO should be able to detect gamma-rays 

from nuclear lines in Kilonova
○ Polarization measurements of the brightest 

bursts.
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The Challenge and Proposed Solution

From ~0.1 - 100 MeV two photon 
interaction processes compete: 

Compton scattering and pair 
production cross sections 

intersect at ~10 MeV
(Additionally, large backgrounds 

exist in this energy range).*
          * This is an understatement.
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Ɣ converts to pair (e-/e+) in a 
multi-layer Si-strip tracker (no 
additional conversion material).

Photon Compton scatters a low-energy e- in 
Si-strip.  Scattered Ɣ can be absorbed in the 
calorimeter. 



AMEGO Details
● Use of well-tested, proven technologies (Si 

tracker, CsI calorimeter, Plastic ACD, …)
● Designed to fit within a probe class budget:

○ Concept for the 2020 decadal review
● Designed to be modular for ease of 

development, testing, and integration.
● 10 year mission goal (similar to Fermi)
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The AMEGO team is a cross-section of the high energy astrophysics community and includes experts on the 
technical and scientific details of the mission.   See https://asd.gsfc.nasa.gov/amego/team.html for an updated list.
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Need to look at the Universe from many different perspectives.

BurstCube 
Nimble

AMEGO



Backup Slides
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Preliminary (see R. Caputo et al. ICRC 
2017 for more details).

Angular Resolution vs. Theta
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Preliminary (see R. Caputo et al. ICRC 
2017 for more details).

Angular Resolution vs. Energy
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Preliminary (see R. Caputo et al. ICRC 
2017 for more details).

Diffuse Backgrounds
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Preliminary (see R. Caputo et al. ICRC 
2017 for more details).

Effective Area vs. Theta
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Preliminary (see R. Caputo et al. ICRC 
2017 for more details).

Effective Area vs. Energy
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Preliminary (see R. Caputo et al. ICRC 
2017 for more details).

Sensitivity
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Polarization

In one week, assuming that the source is in the field of view for 10% of the time, 
AMEGO reaches an MDP of 5% (12%) in the 0.5 - 1 MeV (1 - 2 MeV) energy range.

Preliminary (see R. Caputo et al. ICRC 
2017 for more details).


