

Peter Mészáros

Pennsylvania State University

NAS, May 21-22, 2018

BNS mergers as SGRBs:

Early on,

- E.g. Paczynski, 1986; Goodman, 1986, etc.
- To be found in **old**, "early" type galaxies, e.g. ellipticals, as well as in Pop. II (old) regions of young, e.g. halos of spiral/SFR galaxies.
- But- location could be **offset** from host galaxy, due to kicks during SN explosion

NS kick \rightarrow offset to merger

Figure 3. The radial distribution of coalescing neutron stars around galaxies of various potentials. The letters refer to runs in table 1. In all scenarios, at least 50% of the mergers occur within 10 kpc of the host galaxy. The wider radial distribution of in the underluminous galaxy scenarios (a,c) reflects the smaller gravitational potential of underluminous galaxies.

Verified thanks to Swift :

SGRB afterglows & hosts

data from D.B. Fox

e.g., Gehrels, Ramirez-Ruiz, Fox, 99, ARAA 47:567

SGRB standard paradigm

• E.g. Rees & Mészáros, '92, '94, Mészáros & Rees '97

BNS merger → MHD jets

requisite for GRB rel. jet-shock model

Jet indeed forms: Rezzolla, Kouveliotou et al 'II, ApJ 732:L6, 🖌

mag

field

In greater detail in GRMHD:

BNS merger→HMNS→jet, √

M. Ruiz+16 ApJL 824:L6

(But: no jet if prompt BH? Ruiz+17 PRD 96:084063)

Also...dynamical ejecta (→Kilonova 🗸)

Simulations: D. Radice, visualization C. Breu (see 1601.02426) Density, bright yellow @ IE13 g/cc, transparency @ IE9 g/cc, EoS: Lattimer-Swesty w. nuclear compressibility K=220 MeV

One of Neil's major pushes: confirm the BNS nature through

GW & EM coincidences

Strongest proof :

GRB/GW 170817

$BNS \rightarrow [GW, sGRB, KN]$

- Along and off-axis of structured jet (or cocoon), see the SGRB γ-rays
- at large angles, see kilonova caused by slower neutronrich outflow where rapid neutron-capture *r-process* →very heavy elements, whose opacity and slow decay → optical/IR
- at all angles, see **GWs**

so, with

SGRB/GW 170817

re-confirmed that:

- SGRBs are indeed BNS mergers
- and BNS/SGRBs are also GW sources
- Multi-messenger astronomy now takes off in earnest (beyond SN1987a 1/100 yr events)
- A main goal of Neil's vision achieved !

What other

cosmic channels / messengers can we hope for?

Another of Neil's major pushes: look for

HENU & EM coincidences

So far, progress understanding BNS Y and GW emission - but there may be **other things** to look for

UHE Cosmic rays, & VHE Neutrinos

from BNS (short GRBs) ?

But ... hard to detect !

• Merger:
$$E_{grav} \sim GM^2/R_{HMNS} \sim 3 \times 10^{53} erg$$

Energy is emitted
$$e^+ + e^- \rightarrow \nu + \bar{\nu}$$

mostly as neutrinos: $N + N \rightarrow N + N + \nu + \bar{\nu}$

$$\Rightarrow \nu_e, \ \bar{\nu}_e, \ \nu_\mu, \ \bar{\nu}_\mu, \ \nu_\tau, \ \bar{\nu}_\tau, \quad < E_v > \sim 15 \text{ MeV}$$

Detection mainly through CC int.:

$$\bar{\nu}_e + p \to n + e^+$$

$BNS \rightarrow SN$ -like v-events vs. distance

Rate too small - even with HyperK(Gd) or IceCube Gen2

What about **high-energy** neutrinos? e.g. TeV-PeV Vs in IceCube

pp or pY neutrino production

$$p+p/\gamma \to N+\pi^\pm+\pi^0+\dots$$

Both V_e and V_{μ} are produced by charged pion decay,
Y-ray photons are produced by neutral pion decay

IceCube diffuse astrophysical neutrino background

(Halzen, 2017, TeVPA)

Standard Model of GRB prompt CR/Nu

Observed VHE neutrinos apparently **do not** come from **Classical GRBs**

- IceCube finds that <1% of the EM-observed "classical" long, bright GRBs can be contributing to this observed neutrino flux (time/direction)
- This tests for neutrinos in close time/direction coincidence with *prompt* (main) jet MeV gammas
- But these are mostly long GRBs from ccSNe; and short GRBs (BNS) are much fainter; not surprisingly,

These neutrinos DO NOT come from SGRB PROMPT emissions either !

However:

SGRB are **not** always "**short**"

- **Extended** emission (EE) in 30-50% cases
- EE spectrum is softer than that of the "prompt"
- Prompt: E~I-3 MeV
- Ext'd: E~ 30-60 KeV
- $\Delta t_{EE} \sim \le 10^2 s$

calculate now BNS Merger Neutrino light curves

including also **delayed** components

(e.g. SGRB extended tail emission, etc)

Kimura, Murase, Mészáros & Kiuchi, 2017, ApJL, 848:L4

v-dominance of BNS EE:

- Caused by *lower* Γ, *higher baryon* load
- \Rightarrow higher photon density and shorter t_{PY}
- → higher B-field, stronger pion cooling
- →*lower* pion cooling break, TeV-PeV spectra
- **Still**, fluence **low** for IC3, unless **very** nearby

IceCube, Antares, Auger V-limits on GW170817:

Antares, IceCube, Auger, LIGO-Virgo coll, 2017, ApJ 850:L35

Det. Prob.(≥k events)

(IceCube-averaged includes down-going events)

i.e., IC3: maybe - Gen-2: likely

$Det.Prob(\geq I event) vs. d_{L}$

Figure 3. The detection probability $P(\mathcal{N}_{\mu} \geq 1)$ as a function of luminosity distance d_L . The upper and lower panels are for EE-mod-dist and EE-opt-dist, respectively. The thick and thin lines are for the cases with $\sigma_{\Gamma} = 2$ and $\sigma_{\Gamma} = 4$, respectively. The vertical thin-dotted lines show $d_L = 300$ Mpc and $d_L = 600$ Mpc.

Kimura, Murase, Mészáros & Kiuchi, 2017, ApJL, 848:L4

Another possible HENU mechanism for SGRB :

Internal and collimation shocks in BNS jet-cocoons within the dynamical ejecta

Kimura, Murase, Bartos, Mészáros+18

Allowed parameters for Fermi acceleration by internal & collimation shocks inside ejecta

Spectral nu-flux @ 300 Mpc

Detection probability

TABLE II. Detection probability of neutrinos by IceCube and IceCube-Gen2

Number	r of detected neutr	rinos from single e	event at 40 Mpc
nodel I	[ceCube (up+hor)	IceCube (down)	Gen2 (up+hor)
	6.6	0.55	29
3	0.36	0.023	1.5
Jumber	of detected neutri	inos from single e	vent at 300 Mpc
nodel I	[ceCube (up+hor)	IceCube (down)	Gen2 (up+hor)
1	0.12	9.7×10^{-3}	0.52
3	6.2×10^{-3}	4.2×10^{-4}	0.027
	GW+neutrino	detection rate [y	r ⁻¹]
nodel	IceCube (up+	-hor+down)	Gen2 (up+hor)
nodel	GW+neutrino IceCube (up+	detection rate [yr hor+down)	r^{-1}] Gen2 (up 2.6

1.1

0.076

possible \nearrow (?)

В

Kimura, Murase, Bartos, Mészáros+18

0.28

(slide: K. loka)

The future is bright for Multi-messenger Astrophysics

Neil pointed the way with his pathbreaking initiatives