



**David Burrows** The Pennsylvania State University





# **GRB** afterglows

Fireball model: synchrotron emission from power-law distribution of electrons in highly relativistic outflows. Energy is ~10<sup>53</sup> erg = 5%  $M_{\odot}$ .





### *Feb. 1997*

#### **Beppo-SAX: Afterglows of long GRBs discovered in 1997**

- Redshift measurements => cosmological,  $E \sim 10^{51}$  ergs
- Host galaxies => Long GRBs are associated with starforming regions

#### Beppo-SAX: GRB 970228 2/28/97 3/3/97





Beppo-SAX afterglows: de Pasquale et al. 2006, AA, 455, 813



Gehrels Memorial Symposium



### The Data Gap

Beppo-SAX took at least 6-8 hours to perform an afterglow followup observation with its narrow field instruments. The afterglow fades by orders of magnitude, making study at other wavelengths and measurement of redshift difficult.



# Too many collaborators to list !

 Neil with a few of his best (Swiftest) friends (Swift team at thermal vac tests, GSFC Building 5)





#### The Neil Gehrels Swift Observatory

#### 20 November 2004



#### •BAT First Light: 3 December 2004 •XRT First Light: 11 December 2004



First BAT Burst: 17 December 2004
First XRT Afterglow: 23 December 2004
UVOT First Light: 12 January 2005
Data public since 5 April 2005

# **GRBs and Swift**

- 1. Burst Alert Telescope triggers on GRB, calculates position to ~ 1 arcmin
- 2. Spacecraft autonomously slews to GRB position in 1-2 minutes
- 3. X-ray Telescope: ~ 5 arcsec prompt, ~2 arcsec delayed position
- 4. UV/Optical Telescope images field, transmits finding chart to ground



#### **XRT Image**

#### **UVOT Image**





*T~100 sec* 

*T~300 sec* 



# 1) Lightcurves

Rapid slew, complete light curve coverage from  $\sim 100$  s to  $> 10^6$  s

Swift X-ray Afterglows 977 X-ray Light Curves as of May 17, 2018





### Canonical LC: GRB 050315A

Vaughan et al. 2005





# 2) Jet breaks

Rapid slew, complete light curve coverage from  $\sim 100$  s to  $> 10^6$  s



# Jet Breaks expected in every afterglow





# Two types of afterglow 'jet' breaks





#### Jet Break in GRB 050315A





#### On the other hand: GRB050416A





#### GRB060319





#### GRB061007



 $z = 1.26, \ \theta_j > 8^{\circ} \ n^{1/8} \ \text{OR} \ \theta_j < 1^{\circ} \ n^{1/8}$ 



#### GRB091127A



# The observer angle & hidden jet breaks

# A completely typical Swift long GRB *simulated* afterglow seen from two different angles:

0.1 radian jet seen ON-AXIS

0.1 radian jet seen ON-EDGE



van Eerten, MacFadyen & Zhang (2011) AIP Conf. Proc, 1358, 173

For an off-axis observer: the far edge of jet becomes visible later than the close edge

*"the odds that a Swift light curve from a randomly oriented 0.1 radians jet at z = 2.23 will exhibit a jet break at the 3\sigma level are only 12 percent"* 



# 3) The Naked Eye Burst



#### GRB 080319B V=5.3 @ z=0.937 !







# **Full Light Curves**





### 4) Novae

Rapid slew, flexible scheduling, efficient X-ray and UV monitoring, complete light curve coverage from ~ 100 s to > 10<sup>6</sup> s



The recurrent nova RS Ophiuchi





# 5) SFXTs

### (Supergiant Fast X-ray Transients)

Rapid slew, flexible scheduling, efficient X-ray and UV monitoring, complete light curve coverage from ~ 100 s to >  $10^6$  s

# Swift observations of 5<sup>th</sup> expected outburst of IGR J11215-5952

#### **Supergiant Fast X-ray Transients**



#### 1. Below detectability (L< 3.7 x 10<sup>33</sup> cgs)

2. Slow rise

#### 3. Outburst (1 day) • Rapid variability

- L ~ 1 x 10<sup>36</sup> cgs
- 4. Decline phase with plateau
- 5. Declines to < 1 x 10<sup>33</sup> cgs after 15 days
- SFXTs have dynamic range > 1000, hard spectrum



# 6) Relativistic jet from TDE



# Swift J1644+57: the recurring "GRB"





# 7) From the incredible to the impossible



# Swift's Latest Amazing Feat



Swift coverage of the GW170817 error region obtained 120s X-ray images of 744 fields covering 92% of the distance-weighted GW localization region and set an X-ray flux upper limit of 10<sup>-12</sup> cgs !!

UVOT detected the fading UV afterglow of the NS-NS merger!

# A CONTRACT OF PERIOD

### Conclusions

- The keys to the success of Swift are:
  - Rapid-response robotic multiwavelength observatory
  - Immediate followup of anything that triggers the BAT
  - Extremely productive ToO program that provides followup of sources discovered elsewhere
  - Ability of the Swift Team to repeatedly reinvent Swift by adding new capabilities never contemplated when the mission was designed
  - Neíl's vísíon and team-building genius