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g Detectability of nuclear gamma-ray lines
from nearby and distant supernovae

Shunsaku Horiuchi
(Virginia Tech)

@ -

Image credit: NASA/JPL-Caltech/O.Krause (Steward Observatory)



Type la supernova (SNla)

* Extensive use in cosmology, galaxy chemical evolution, sources of energy
and cosmic rays, important stellar evolution, etc.

* SNIla are not as standard as we might like: “Normal”, “SN1991T-like”,
“SN1991bg-like”, “SN2002cx-like”, etc

» Zeroth-order picture: “burning” of a ~1 Msun C/O white dwarf
e But there are many unknowns
* Progenitor system?

* Ignition? SNe la

* Flame propagation? , _
02cx , 91T
Gamma rays offer unique probes of these unknowns! | 5% ;9%

91bg
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Nucleosynthesis

 Thermonuclear explosion generates ~0.6 Msun of Nickel-56

0.6 0.8
56Ni mass (Mg)

Data from Stritzinger et al (2006)
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Nickel decay chain and gamma rays
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The SNIa light curve is
powered by the nuclear
decay chain
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Gamma-ray tomography

 The gamma-ray escape fraction encodes useful information of the matter
density morphology and Nickel-56 distribution.
* Both of these depend strongly on the progenitor system and ignition site
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SN2014)J: closest SNIla in decades

IKI, MPA and INTEGRAL team

Intensity: 1.90 + 0.66
mensty: 1.90% SN-2014J

Centroid: 811.84 +0.42 keV
FWHM: 2.23 keV (fixed)
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Diehl et al (2015) Churazov et al (2014)

INTEGRAL-SPI
* 158 keV and 812 keV lines from Ni-56 decay, ~1-2e-4 ph /s /cm?
» 847 keV and 1238 keV lines from Co-56 decay, ~2-4¢-4 ph /s /cm?

* 56Ni lines started early (~20 days)
* Inferred velocities ~2000 km/s
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INTEGRAL-SPI
158 keV and 812 keV lines from Ni-56
847 keV and 1238 keV lines from Co-E

A belt of He, from a companion He star,
exploding, and triggering a WD explosion,
provides a plausible explanation

56Ni lines started early (~20 days)
Inferred velocities ~2000 km/s
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What next in gamma ray?

1. More la supernovae: will tell us about variations

2. More la supernovae: given the prominence of la
supernovae in cosmology and many topics in
astrophysics

3. More gamma rays: given the unique information
gamma rays provide us

Supernova rates tell us the required sensitivity to satisfy
reasonable physics return over some time duration

Updates of Gehrels et al (1987), Timmes & Woosley (1997)
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Two methods for supernova search

1.

Galaxy survey: 2.

« Repeated observations of a .
list of galaxies

 Galaxy sample bias (e.g., may .
miss faint galaxies)

 Canstrategically cover large .
angular regions of the sky

e E.g., LOSS .
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Patch survey:

Repeated observations of
patch(es) of sky

Can survey large volumes if
deep enough

Completeness and volumetric
rate simpler to estimate

E.g., DES
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What next: nearby detection

How frequently do la supernovae go off locally in nearby galaxies?

Raw counts gives us lower limit.
Cosmic SNla rate
[1 D

Three regimes: 847 keV flux [
1. Within 10 Mpc: rare, 10”
great science = (Cosmic rate

: 2000-2009
returns, typically 1 1990-1999
per decade or less 1980-1989

e 1970-1979

2. Within 20-30 Mpc:
nearby galaxy
clusters raise the
SNIla rate. Good
target to aim for in
future plans?

3. Beyond 30 Mpc:
close to the cosmic l
extrapolation
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What next: nearby detection

How frequently do la supernovae go off locally in nearby galaxies?
Raw counts gives us lowarlinit

2010 - 2014 E Cosmic SNla rate

Three regimes:
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What next: cosmic detection

The cosmic SNla rate is now increasingly better known.
Select measurements with good spectroscopic ID: The rate can also be

I l I cross-checked with the
y N (0009 & Rusmmtesvaetal (3008) star formation rate
through the delay-time

distribution (DTD)
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What next: cosmic detection

The cosmic SNla rate is now increasingly better known.
Select measurements with good spectroscopic ID: The rate can also be
cross-checked with the
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distribution (DTD)
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Contribution to the MeV diffuse gamma

Swift/BAT (Ajello et al. 2008)
INTEGRAL (Churazov et al. 2007)
- SMM (Watanabe et al. 1997)
COMPTEL (Weidenspointner et al. 2000)
EGRET (Sreckumar et al. 1998)
W7 (deflagration)
- 5p0z22.23 (delayed-detonation)

\

Some factor of ~10
lower than current
measurements

pt
d

_- BUT: rate uncertainty
is smaller than model
uncertajnty!
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Conclusions

* Nuclear gamma rays provide useful tomography of SNla

* Recent progress in SNla gamma-ray detections
 SN2014)J in particular

* Supernova rates determine the required sensitivity to satisfy
reasonable physics return over some time duration

e Supernova rates are now better determined
* Locally: close to annual SNla within ~20 Mpc, with ~10° ph
cm2 s1°°Nj (812 keV) and ~10~ ph cm™ st °°Co (847 kV) line
intensities, respectively.
* Cosmologically: contributes to diffuse gamma rays at the 1
keV cm™ s srllevel, but good potential since SNIa model
variations dominate the uncertainty
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