Future Prospects for MeV Gamma-ray Burst Observations

Judy Racusin (NASA/GSFC)

Future Space-Based Gamma-ray Observatories Workshop, GSFC, Feb 4-5, 2015

GRB Formation

GRBs in the MeV Range

- GRBs are already detected regularly with scintillators (Fermi/GBM, Konus/WIND, Suzaku/WAM, CGRO/ BATSE) in the 10's of keV – MeV range
 - Background dominated Only sensitive to bright transient objects
 - Huge fields of view Poor localizations (~few deg)
 - Sensitivity peaks at ~few hundred keV – as do most GRB spectra
 - Few GRBs peak in > 1 MeV range (for which E_{peak} measurements have been possible)

GRB 110721A: Axelsson et al. 2012

What have we learned about GRBs from Fermi?

- Broad energy coverage (8 keV >100 GeV) showed that:
 - Prompt emission spectra require additional components at both low and high energies to explain excesses
 - Afterglow appears to be a single spectral component from optical to GeV energies
- GeV GRBs tend to be highly energetic, have high bulk Lorentz factors (~1000)

Some GRBs show cutoffs in MeV range – due to pair opacity?

Guiriec et al. 2015

Prompt Emission Spectra

- Synchrotron shock model (particles accelerated in a relativistic shock)
 - Predicts Maxwellian distribution with low energy index < -2/3 ("Synchrotron Line of Death")
 - Band function is an empirical approximation
 - Low energy index frequently exceeds -2/3
- Extra power laws extending from low to high energies could be afterglow onset
- Sub-dominant blackbodies (natural consequence of photospheric emission)

Guiriec et al. 2015

GRB 090926A

Burgess et al. 2014

Origin of GeV emission

- Few second delay compared to keV emission
- Lasts substantially longer than keV emission
- Probably some mixture of prompt and afterglow
- No strong evidence of additional Synchrotron Self-Compton or Inverse Compton components

Ackermann et al. 2011, ApJ, 729, 114

GRB Afterglows

GRB 130427A Challenges Synchrotron Shock Physics?

- Single component from radio to GeV strongly suggests Synchrotron origin, and no secondary SCC or IC component
- High energy photons violate maximum Synchrotron energy

Ackermann et al. 2014

Kouvelioutou, Granot, Racusin et al. 2013

GRB 130427A Challenges Synchrotron Shock Physics?

Open Questions in GRBs

- What is the true shape of the the prompt emission spectum, and therefore also emission mechanism(s)?
 - How common are multiple components?
 - Temporal and spectral evolution of components?
 - This would benefit from simultaneous keV-10's of MeV sensitive spectral coverage
- Is the afterglow of synchrotron origin and a single component from radio to GeV?
 - Bridging gap between few MeV and GeV would help
- When is the transition between prompt emission and afterglow? What radius from the central engine does that occur? What are the implications for jet composition (magnetic vs baryonic)?

What's needed to do next generation GRB Science?

- Need a keV triggering instrument to get temporal and spectral context of higher energy observations
 - Huge field of view (all sky?)
 - Wide energy coverage (10's of keV to few MeV)
 - Accurate localization (<few deg)
 - Rapid triggering sent to ground
 - Trigger rapid repointing?
 - Also useful for continued GRB science including LIGO/Virgo counterparts
- MeV instrument
 - Onboard triggering and localization (to fraction of deg accuracy)
 - Automated repointing and following new bright GRB for ~hours
 - Good energy resolution and sensitivity to measure GRB spectra and light curves

A sensitive, large FoV, good energy resolution, MeV Instrument would:

- Provide a larger sample of gamma-ray prompt and afterglow observations (there are a lot more photons in MeV range with photon index=-2 spectrum) than Fermi-LAT
- Have an effective area optimized at 10's of MeV and would provide better statistics for spectral fitting in what has previously been a noisy MeV spectral regime
- Provide large sample of MeV afterglows that would address single component synchrotron issue
- Measure polarization to put constraints on magnetic versus baryonic dominated jets?
 - GRBs are bright, but don't last very long unlikely to provide enough counts to make significant measurements