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The DAMPE Detector

Launch this year!

Plastic Scintillator Detector

-

Silicon-Tungsten Tracker

BGO Calorimeter

Altitude: LEO 500 km
Inclination: 87.4065°
Sun-synchronous orbit
Period: 95 minutes
Launch October 2015

W converter + thick calorimeter (total 32 X,)
precise tracking + charge measurement =
high energy y-ray, electron and CR telescope




Comparison with AMS-02 and Fermi

—muml

e/y Energy res.@100 GeV (%) 1.5

e/y Angular res. @100 GeV (°) 0.1 0.3 0.1
e/p discrimination 10° 10°-10° 103
Calorimeter thickness (X,) 31 17 8.6
Geometrical accep. (m?sr) 0.29 0.09 1




Containment radius []

Sub-GeV detection is NOT improved

* The science case for high resolution (<= 1°) gamma-ray space telescope around 100 MeV
is very compelling

— But it has yet to be realized, best instrument up to now is FERMI

PSF 3°-8° @100 MeV after latest software (Pass 8) improvement
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* At ~100 MeV, pair production dominates

Z of absorber

— Very small cross section = need more
material for good acceptance

— Material is the limiting factor of angular
resolution because of important multiple

scattering at “MeV
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PA N G U The first living being and the creator of the Universe

from chaos in Chinese mythology.

Formless chaos
coalesced l

Cosmic egg

balanced l

Yin and Yang

l

Pangu



http://en.wikipedia.org/wiki/Chinese_mythology
http://en.wikipedia.org/wiki/World_egg
http://en.wikipedia.org/wiki/Yin_and_Yang

What does PANGU mean to me?

PAir productioN Gamma-ray Unit
PANoramic Gamma-ray Unit

Polarized ANd Gamma-ray Universe
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Wu et. al, arXiv:1407.0710




PANGU: PAir-productioN Gamma-ray Unit

Sub-GeV y-ray telescope with unprecedented angular resolution
— Energy range of 10 MeV - 1 GeV with = 1° point spread function at 100 MeV
— With polarization measurement capability

Innovative payload concept for a small mission
— Thin target material (SciFi or Si) (with magnetic spectrometer)

Wide range of topics of galactic and extragalactic astronomy and
fundamental physics

— Complementary to the world-wide drive for a next generation Compton
telescope (~0.1-100 MeV)

An unique instrument to open up a frequency window

that has never been explored with great precision




Detection principle:
How Fermi-LAT detects gamma-ray photons

4
Incident hot ’ L
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Converted electron/positron pair
carries information about the
direction, energy and polarization
of the gamma-ray photon



Detection principle:
How PANGU detects gamma-ray photons
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Detection principle:
How PANGU detects gamma-ray photons

Incident gamma photon ' reconstructed direction

Converted electron ' Thin X-Y silicon
and positron pair ) strip detectors

50 layers




Detection principle:
How PANGU detects gamma-ray photons

Thin X-Y silicon
strip detectors

50 layers




Response to the ESA-CAS small mission call for proposal

+ EUROPEAN SPACE AGENCY &' ABOUT SCIENCE & TECHNOLOGY
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The four themes
Planets and Life
The Solar System
Fundamental Laws

The Universe

PLANNING FOR A JOINT SCIENTIFIC SPACE MISSION
AN INITIATIVE OF THE EUROPEAN SPACE AGENCY AND THE CHINESE ACADEMY
OF SCIENCES

FIRST ANNOUNCEMENT

1st Workshop
Planning for a joint scientific space mission
Chinese Academy of Sciences (CAS) - European Space Agency (ESA)
Chengdu (China)
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Pre-defined Boundary Conditions

* ESA contribution comparable to "Small Mission” (53 M Euros) + a similar size
from CAS

— As it is usual for ESA science missions, the ESA Member States are
assumed to provide (partly or fully) the European contribution to the
payload elements

* Preliminary technical guidelines
— Payload mass < = 60kg, Spacecraft wet mass <= 300kg
— Payload average power consumption <= 65 W, peak <= 100 W
— Operational lifetime of satellite three years.

* Technology readiness requirements: TRL >= 7 for platform elements, TRL >=6
for payload, by the time of the call

* Launcher:

- Long March launchers LM-2C or LM-2D, both launched from China,

- European launchers, namely Vega, Soyuz and Ariane 5, launched from
the Guyana Space Centre (CSG in Kourou). Note that for Soyuz or Ariane 5
cases, only an auxiliary/piggy-back passenger launch can be envisaged.



The PANGU Collaboration

* A growing international collaboration from China, Europe and US
— 64 members from 21 Chinese institutes

— 24 members from 11 European institutes (Switzerland, Italy, Sweden,
Germany, France, Netherlands)

— 6 members from 4 US institutes

* P —

Strong interest and broad support from the

Chinese and European astrophysics communities




Possible Detector Concepts

* To achieve <1° angular resolution passive material should be minimized
and active detector should be thin or low density
— To increase effective area (mass!) needs many layers or large volume
* Concepts for high resolution gamma pair telescope studied before
— Low density gas (or liquid) TPC: HARPO, AdEPT (5-200 MeV), LArGO...
* Potentially very good resolution
* Need large pressure vessels (AdEPT: 6x1m3 vessels for 20 kg gas)
— All-silicon, many optimized as Compton telescope (with calorimeter):
« MEGA/GRM: Double-sided SSD, distance 5 mm, 500 pum thick
* CAPSITT: Double-sided SSD, distance 1 cm, 2 mm thick
* TIGRE: Double-sided SSD, distance 1.52 cm, 300 um thick
 Gamma-Light: single-sided, distance 1 cm, 400 um thick
— Scintillating fiber
* Previous concepts with converter: SIFTER, FiberGLAST
— PANGU: a new all-fiber or all-Si tracker light weight concept



Sketch of the Earlier PANGU Layout

ACD

ETarget-
Tracker

Target and magnet sizes
can be easily scaled to fit

Lower Tracker

with resource constraints!

* 3 sub-systems: target-tracker, magnet + lower tracker, Anticoincidence
— Target-tracker : ~ 70 x 70 x 30 cm’
— Magnet: B=0.1T, h =10 cm, field in +y direction
- Halbach array with 1.5 T NdFeB magnet, r, (r,) = 27 (25) cm, 21 kg
— Lower tracker: one X-layer above, one X-layer, and two X-Y layers
below, ~¥10 cm between
— Anticoincidence detector (ACD) on 5 sides



PANGU-Si vs PANGU-Fi

« Silicon and fibers trackers are both viable technologies

— Challenges are mainly engineering: optimal use of the limited weight
(ultra-light module) and power budgets (low power ASICs)

* Silicon has been successfully used in similar space missions

— Fermi, AGILE, Pamela, AMS-02, ... ,

* Fiber is cheaper, less fragile, more flexible geometry, but the technologies ot
scintillating photon detector (SiPM) and readout ASICs are newer (TRL < 6)

— Recent developments in high energy physics, eg. LHCb, Mu3e, ...
* Also in space: balloon prototype PERDaix of PEBS

— Position resolution ~70 um can be achieved Mu3e module

PERDaix module



The Target-Tracker

* Possible layout
— x-y double layers with 6mm inter-distance, 50 double layers
« Tracking layer with ~0.3% X, total (requirement)

— Silicon: 2 single sided SSD of 150 um each

— SciFi: 2 layers of ~0.65 mm each (Polystyrene equivalent), each layer
formed by a stack of 3 layers of =250 um fibers, readout by SiPM

» Total tracker active material
— Silicon: ~17kg (silicon density ~2.33 g/cm3)
— Fiber: ~25kg (polystyrene density ~0.9 g/cm3)
 Both need support substrate
— Probably more for Si: biasing, bonding, more fragile
* Baseline: ~50kg for fiber/silicon, support structure, FE electronics
— Plus: 30 kg for magnet, 20 kg for the rest (ACD, DAQ, ...)
— total weight ~100 kg
e Can be re-optimized to 60kg with reduced acceptance if limit is strict!



Power Consumption

* Total number of readout channels of 50 double-layers in the target + 6
layers in the lower tracker, with 250 um readout pitch, is “300k channels

— Si strip detector pitch ~250um, fibers can be readout by SiPM of 250
pm pitch

e Current Si readout ASIC consumes ~0.2mW/channel
— Push for ~0.1mW/channel with some R&D
— Similar for readout ASIC for SiPM
* Total ASIC power ~30-60 W
» Total power consumption of payload 60-90 W
— Including CPU for online selection



Satellite Platform and Mission Concept

« Satellite platform
— Temperature stability
* Low temperature preferred for magnet and SiPM
— Magnetic shielding
* For satellite navigation system, not for payload
— Pointing stability and precision
* ~0.1° is sufficient
* Mission concept
— Low earth orbit
— All-sky survey and pointed observations

* With possibility to rotate the payload to study systematic effect of
polarisation measurement

* GRB fast alert downlink
— Minimum lifetime three years
— Science data open to the world community



Potential Collaboration Projects

 Many interesting and challenging topics for collaboration

Science study: Science potential of a high resolution detector
Conceptual Design: Payload performance and optimization
Permanent magnet: light weight, uniformity

SciFi tracking layer: automatic winding process, placement precision,
gluing process, light weight support, ...

Target-tracker: integration of layers on precise light weigh frame
Photon detector

e SiPM: high efficiency, low dark current, high density

e Other photon detection scheme?
FE ASIC: low power, trigger, timing

Trigger, Readout and DAQ: low power consumption, low dead time,
robust trigger algorithm, flexibility for different observation mode

ACD: low weight, coverage, segmentation
On-ground data processing, science preparation: Science data center



Photon Angle Measurement

* For normal incidence (cos(0)>0.975), both tracks in the lower tracker
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Angular resolution of pair telescopes

Ar 1140.00
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arXiv:1311.2059 [astro-
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* PANGU: both tracks in target
% PANGU: both tracks in spectrometer

* Geantd4 simulation with 150 um
thick single-sided Si detector,
242 pm pitch

= position resolution ~70 um
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* Results are preliminary
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PSF Comparison with Fermi Pass 8
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* PANGU: both tracks in target Energy [MeV]

% PANGU: both tracks in spectrometer
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Acceptance Compared to Fermi Pass 8

<= Fermi Pass 8
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Angular Relative Acceptance
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How about the energy measurement?

* Standard way is to use a calorimeter under the tracker
— Eg. AGILE mini-calorimeter, Csl, 1.5X,, 37.5x37.5x3 cm?3, ~30 kg total,
~20kg active
* Limited energy resolution ~70% at 100 MeV because of leakage
* For PANGU (50x50x3 cm3) would need ~53 kg for calorimeter
— Eg. GAMMA-LIGHT calorimeter (50x50x4.5 cm3) = ~80 kg total
— Calorimeter not optimal if payload < 100 kg
* The PANGU approach: magnetic spectrometer with permanent magnet
— Magnet below the tracker-target (light-weight configuration)
* Magnet can be independently optimized
* But limited FOV
— Complication
* Need to minimize stray field and shield sensitive satellite equipment



Energy Resolution
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Scientific Objectives: highlights

Precise mapping of the gamma-ray sky at sub-GeV with
high angular resolution

Origin and acceleration of high energy cosmic rays
Indirect dark matter search
First detection of sub-GeV polarization

Full-sky monitoring of a variety of soft gamma-ray transients
(GRB/AGN/Solar flare/Terrestrial)

Synergic multi-wavelength campaign
Lorentz invariance/Baryon asymmetry in early universe



NOW: A tracker-only payload

40 cm * 40 cm

15 mmI

50 layers, 100 cm




Pathfinder for HERD

5
o T

7 layers of x-y tracker for top
STK and for lateral STK

LY SOucrystal, 3*3*3 cm?%3,
2124521 array
Each crystal.is'readout by
2~4 WLS fibers

side silicon strip LYSO calorimeter

charge detection e/y energy detection

CR composition e CR nuclei energy detection
e/p separation

Silicon-Tungsten Tracker + LYSO Calorimeter




YH( FUTURE CHINESE SPACE STATION

Beam test at CERN this year!

The High Energy cosmic-Radiation Detection (HERD)
Facility onboard China’s Future Space Station

S.N. Zhang®, O. Adriani™?, S. Albergo’, G. Ambrosi”, Q. An®, T.W. Bao®,

R. Battiston™ X_J. Bi%, Z. Cao?%, J.Y. Chai®, J. Chang¢, G.M. Chen?®, Y. Chen/, X.H. Cni’, ~2020
Z.G. Dai/, R. D’Alessandro™, Y.W. Dong®, Y.Z. Fan®, C.Q. Feng®, H. Feng", Z.Y. Feng®.
X.H. Gao¥, F. Gargano®, N. Giglietto?, Q.B. Gou®, Y.Q. Guo®, B.L. Hu?, H.B. Hu®, H.H. He?,
G.S. Huang®, J. Huang®, Y.F. Huang/, H. Li %, L. Li% Y.G. Li% Z. Li%, E.W. Liang/, H. Liu®,

J.B. Liu®, J.T. Liu?, S.B. Liu*, S.M. Liu®, X. Liu®, J.G. Lu®, M.N. Mazziotta®, N. Mori*¥,
S. Orsi¥, M. Pearce. M. Pohl"v Z. Quan®, F. Ryde", H.L.. Shi%, P. Spillantini®?, M. Su®¥,
J.C. Sun“, X.L. Sun”, Z.C. Tang®, R. Walter”, J.C. Wang?, J.M. Wang”, L. Wang?,
R.J. Wang®, X.L Wang®, X.Y. Wang/, Z.GC. \\angb D.M. Wei©, B.B. Wu®, J. Wu", X. Wu®,
X.F. W€, J.Q. Xia® H.L. Xiao®, H.H. Xn% M. Xu%, Z.Z. Xu® H.R. Yan?, P.F. Yin®,

Y. W. Yu™, Q. Yuan®, M. Zha®, L. Zhungk L. Zhang”, LY. Zhang®, Y. Zhaug" Y.J. Zhang"®,
Y.L. Zhang®, Z.G. Zhao*

Science Group First Leader Second Leader
Gamma-ray astronomy |Vieng Su Roland Walter

Dark Matter search M.Nicola Mazziotta |Qiang Yuan

Cosmic-ray astrophysics |Xiaojun Bi Mark Pearce

SPIE proceeding: arXiv:1407.4866



Expected gamma-ray sky sensitivity of HERD
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Conclusions

 PANGU is an unique and timely opportunity for high energy
astrophysics. It will resolve and monitoring the sub-GeV sky

with unprecedented spatial resolution, separating diffuse
gamma-ray emission from point sources
— PANGU science is not “incremental science”, it will lead to
fundamental discoveries and understanding.
 PANGU is synergic with DAMPE, HERD, CTA, Gamma-400 and
other ground-based and space detectors (e.g., radio, optical,
X-ray, TeV, gravitational wave experiments)

* Payload concept is innovative but the technology is ready
— TRL6-7 for silicon tracker
— TRL5 for scintillating fiber tracker



Thank You!




