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Unresolved Questions Prior to Fermi

= Band model adequately fits a large majority of bursts
= NO physical emission mechanisms predicts this spectral shape
= Relatively narrow Epk values
= Synchrotron via internal shocks: Epxk &< Bl e
= Bursts with very hard o values above synchrotron “line of death”
= Significant fraction of bursts harder than o < -2/3
= Bursts with high-energy spectral indices of 3 > -2
= \Where do these bursts turn over?
= \Where is the photospheric emission?

= [he fireball model naturally predicts thermal emission



Unresolved Questions Prior to Fermi

Where is the evidence for pair attenuation?

= No definitive detection of turnovers in BATSE or EGRET spectra

Nature of the long lived components seen by EGRET?

= How common where these late-time high-energy emission?

= \Where are the IC and SSC components?
= |S Epk the SC or the IC/SSC peak or are those peaks at higher energies”?

= \What are the origins of the x-ray flares and plateaus in afterglow light curves?
= | ate-time energy injection?

= \What is the ratio of the magnetic and electron energy densities of the jet?

= Are these magnetically dominated outflows?



The Fermi Spacecratft

= Fermi Gamma-ray Burst Monitor (GBM)
= Scintillation detectors
»= 12 Nal: 8 keV - 1 MeV

x 2 BGO: 200 keV - 40 MeV

= Fermi Large Area Telescope (LAT)

= Pair conversion telescope BATSEBM i
= Energy coverage: 0.1 to >300 GeV R 1
= (GRB Detections
x  GBM Detections >1800 (~240 GRBs/yr)
» | AT Detections: >130 (~15 GRB/yr) s 5 e s =ise

Energy (keV)




Peak Spectral Energy (Epk)

GRB 110721A GRB 130427A
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Bursts with Epk > 1 MeV are not uncommon
= [ime-resolved analysis shows that Epk can be extremely hard at the burst onset

Time-integrated fits yield a Epk distribution centered near peak sensitivity

110721A would have appeared as 3 > -2 spectra in the BATSE era



Photospheric Blackbody Components

GRB 110721A GRB 090902B

: 1.400: 1.700 s
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» 110721A: Double peaked spectra, possible subdominant blackbody component
x  090902B: Broadened blackbody plus a power law
= Blackbody peak is less dependent on the Lorentz factor

= Growing evidence for photospheric emission broadband fits



Direct Fits to Physical Models

Direct fits to blackbody and synchrotron GRB 090820A

spectra

Times: 30.720: 31.744 s

Line-of-death issue can be overcome
naturally with this combination

The Planck like spectral contribution
allows for steeper vFy spectra near the
peak than is allowed by synchrotron
alone
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Power-Law Synchrotron
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This approach directly constrains e Loy
physical model parameters as opposed
to phenomenological ones

Burgess et al. 2011

Bright GBM & LAT bursts are
challenging the simple Band model
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Evidence for MeV Spectral Cutoffs

Time-integrated photon spectrum (3.3 s - 21.6 s)

Both direct and indirect evidence for spectral cutoffs

Times: —1.620; 20,608 &

BGC_01 +
N&I_QB
N&_Qg o

LAT

High energy cutoff in the extra power-law seen in 090926A

Inclusion of the BGO and LAT data tends to soften hard bursts with 3 > -2

Other bursts cannot accommodate the LAT limits and require a break at MeV



Evidence for IC/SSC Emission?

GRB 090510 GRB 131108A

GRB 090510A
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= Several authors have fit the prompt GBM and LAT data to double peaked spectra
= GBM emission could be due to phosphoric emission and LAT is due to IC emission

= Delayed nature of the high-energy emission makes this interpretation challenging



Origin of LAT Detected Emission®?

Soses GRB 130427A
= Delayed onset of >100 MeV emission compared to

keV emission in most bursts

Flux [0.1 - 100 GeV]

= Prompt correlated emission > 100 MeV does exist
» Extended in nature, lasting hours in some cases

= Power-law decays, with slopes that resemble
afterglow decays TE L s moan

LAT energy flux (0.1-100 GeV, erg cm* s°*

LAT photon flux (0.1-100 GeV, ph. cm™2 5!

= Kumar & Barniol Duran 2009 proposed a simple
external shock origin to this emission

|
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= Multi-wavelength observations of GRBs 110731A &
130427A support an external shock origin of their

Photon
energy (GeV)

10°

late-time high-energy emission Time since rigger (s
Ackermann et al. 2013

= Observed properties disfavors direct IC and SSC of
prompt keV emission

Daniel Kocevski - Clemson University, October 19th, 2015 11



High-Energy Afterglow Emission

GRB 110731

Forward Shock Synchrotron Spectrum - Slow Cooling

Optlcal III: t=100 s
IV:t=550s
V: =2.7d
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= | ate-time high-energy emission seems to be an extension of the afterglow spectrum
= Only observable in the brightest and hardest afterglows

» There are no LAT bursts with emission in excess to that expected from the x-ray spectrum

Daniel Kocevski - Clemson University, October 19th, 2015 12



No Evidence For IC/SSC Emission

GRB100728A
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Where is IC/SSC Emission??

IC Emission
X-ray Y-ray
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|C/SSC Constraints

= No evidence for late-time IC/SSC emission within the Forward Shock Synchrotron
LAT energy range from any segment of the afterglow 4
phase Synchrotron Peak

» |C scattering from x-ray flare photons, plateau IC/SSC Peak

emission, or SSC from the forward shock

= Blast wave with large fraction of total energy in
energetic electrons and/or a very low magnetic field
density will generate a prominent SSC peak

Flux Density (mJy)

Radio Optical XRT LAT

= QOur results favor a magnetically dominated blast s2ecetensre

wave with €g >> €k

Synchrotron Peak

» Other possibility is the SSC peak is outside the LAT
energy range

= [f synchrotron peak is in x-ray, would require a

very high electron lorentz factor of Ym > 1000 IC/SSC Peak

Flux Density (mJy)

= Magnetically dominated jets could produce highly
polarized emission

\4

Radio Optical XRT LAT
Energy (keV)



New Questions!

= How common are blackbody-like components in the prompt emission?
= \Where is the transition from prompt to afterglow emission at MeV-GeV energies?
» \What accounts for the delay in the prompt MeV-GeV emission
» \What is the origin of the extra power-law components
»  How common are spectral cutoffs at MeV energy for LAT non-detections
=  How do they evolve and depend on other burst properties
= Are GRB jets magnetic or kinetic energy dominated?
= |s there a single component in the X-ray and GeV spectra in the afterglow emission
= \Where is the SSC peak?

= How polarized is the prompt and extended emission”?



What do we need in a future mission??

= \Wide field of view sensitive keV triggering instrument
» |n order to characterize the soft gamma-ray temporal and spectral properties
» Accurate localizations with ability to repoint the spacecraft
= Sensitive MeV instrument with an effective area optimized at 10’s of MeV
= Measure the energy and evolution of the peak vFy spectra for faint and bright bursts
= Measure the energy and evolution of the high-energy spectral cutoffs and hence [
= Measure MeV afterglows to test single synchrotron component interpretation
= Polarization!
= The holy grail for GRB science
= Could finally settle the issue of photospheric vs optically thin emission

= Could put constraints on magnetic versus baryonic dominated jets



