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AI is the new electricity.
– Andrew Ng, Founder Coursera, Chief Scientist Baidu

AI is is more profound than electricity or fire.
– Sundar Pichai, Google CEO

A.I. is in a 'golden age' and solving problems that 
were once sci-fi.
– Jeff Bezo, CEO Amazon



Computer Vision, circa 2005

(c) Processed image

P. Felzenszwalb, D. Huttenlocher (2006), Efficient Belief Propagation for Early Vision,
International Journal of Computer Vision, Vol. 70, No. 1, October 2006



Computer Vision, circa 2016



Natural Language Translation (2016)



Multilayer Artificial Neural Networks AKA 
Deep Learning

• Initial ideas from 1940’s
• Core technical developments in 

1980’s
• Today’s hardware 10,000 times 

faster – repurposing video game 
graphics hardware!

• Moravec’s Hardware Hypothesis: 
Need brain compute power

• Also required: BIG Data!

2030: $1,000 compute
resources will match 
human brain compute 
and storage capacity



Reflexive Intelligence

• Deep Learning excels at tasks requiring 
reflexive reasoning
• Near instantaneous recognition, generation, 

and translation of patterns
• Perception
• Locomotion / manipulation
• Flight or fight decision making

• Kahneman: System I



Deliberative Intelligence

• Often overlooked in the excitement over deep learning is decades of 
steady progress on deliberative reasoning 
• Deduction
• Heuristic search
• Sound probabilistic reasoning

• Combinatorial optimization
• Kahnehan System 2

• Not just brute force enumeration!
• Randomized algorithms
• Caching partial solutions



1997: IBM’s Deep Blue defeats Kasparov
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Consider a sequence of 1s and -1s, e.g.:
-1,  1,  1,  -1,  1,  1, -1,  1,  -1,  -1  …

1        -1        1        1          -1  …
1             1              -1        …

-1                  1               …
and look at the sum of the sequence and its subsequences

-1 + 1 = 0
-1 + 1 + 1 = 1
-1 + 1 + 1 + -1 = 0
-1 + 1 + 1 + -1 + 1 = 1
-1 + 1 + 1 + -1 + 1 + 1 = 2
-1 + 1 + 1 + -1 + 1 + 1 + -1 = 1
-1 + 1 + 1 + -1 + 1 + 1 + -1 + 1 = 2
-1 + 1 + 1 + -1 + 1 + 1 + -1 + 1 + - 1 = 1

and “skip by 1”
1 + -1 = 0
1 + -1 + 1 = 1
1 + -1 + 1 + 1 = 2

and “skip by 2”
1 + 1 = 2
1 + 1 + -1 = 1

We now know (2015): there exists a sequence of 1160 +1s and -1s such 
that sums of all subsequences never < -2 or > +2.

Mathematical 
Discovery

Erdos Discrepancy Conjecture: 
For all N exists some
sequence with all sums 
between -2 and +2



Superhuman Deliberative Intelligence

• Result was obtained with a general reasoning program - a Boolean 
Satisfiability or SAT solver (2015)
• 37,462 Boolean variables
• 161,644 constraints

• Proof of non-existence of discrepancy 2 sequence found in about 10 
hours on a laptop!
• Proof: a billion small inference steps
• Independently verified by a simple (50 line) proof checking program

• No human could create or understand this kind of proof 
• But: we can be trust of the result because of the verifier



Deliberative AI in Action

• Superhuman “chess-like” 
reasoning prowess solves hard 
problems in planning, resource 
optimization, and design
• NSF Expeditions Award: 

Computational Sustainability



Reflexive versus Deliberative Intelligence

• Some tasks that were thought to require deliberation can be solved 

reflexively by deep learning, if justification of result not required
• First-pass mass scanning of medical images

• Credit risk scoring

• Many deep learning researchers believe deep learning can eventually 

encompass deliberative as well as reflexive reasoning

• Neural Turing Machine (2015) – in principle can learn to do anything, in 

practice can learn to sort small numbers

• Hybrid artificial intelligence: Reflexive + Deliberative Reasoning

• Deep Learning + Combinatorial Optimization



Alpha Go / Alpha Zero (2016/2017)

• Deep neural network learns 
“evaluation function” – reflexive 
estimate of value of board 
position
• Stochastic tree search (kind of 

combinatorial optimization) 
uses evaluation function to 
choose play
• Alpha Zero: generalizes to 2 

player board games of perfect 
information



Still Needed: Comprehensive Intelligence

• AKA Commonsense
• Needed to deal with 

unforeseen cases, not in 
training data
• Example: Streetsweeper driving 

slowly on left edge of highway
• Human drivers easily avoid
• Telsa on autopilot crashes 

into it!



Human versus Tesla



Human versus Tesla
No one else is driving 
in the left lane. Do 
they see trouble 
ahead?

Wheeeee!  No traffic 
in my lane!



Human versus Tesla
No one else is driving 
in the left lane. Do 
they see trouble 
ahead?

Wheeeee!  No traffic 
in my lane!

What the heck is that 
orange thing?  I don’t 
know, but I better 
avoid it!

I don’t see any cars 
or pedestrians!



Human versus Tesla
No one else is driving 
in the left lane. Do 
they see trouble 
ahead?

Wheeeee!  No traffic 
in my lane!

What the heck is that 
orange thing?  I don’t 
know, but I better 
avoid it!

I don’t see any cars 
or pedestrians!

A streetsweeper on 
an expressway?! 
What a crazy thing!

[ DEAD ]



Natural Language (Non) Understanding

• Today’s AI system may recognize and even translate natural language, 
but they do not understand it
• Fail to solve simple pronoun resolution problems that require 

understanding 
• Winograd Schema Challenge (Morgenstern et al. 2016)
• The city councilmen refused the demonstrators a permit because they feared

violence.
• The city councilmen refused the demonstrators a permit because they 

advocated violence.



Discourse Understanding
• Back in the 1980’s, researchers formalized natural 

language discourse as a process of planning and 
plan recognition (Cohen 1980; Allen 1983)

• Key idea: utterances are actions described by 
preconditions and effects

• Linguistic tasks such as pronoun resolution are 
inferring the most likely parameters to the 
underlying discourse plans

• Framework naturally handles multiple utterance 
exchanges – not just single question / answer pairs

• Research challenge: Employ this framework with 
modern methods for learning, reasoning, and 
speech recognition!
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Representation Learning
• Deep learning from raw features (e.g. pixels) must abstract the data in 

some way
• The internal state of a deep network is thus in some sense a 

representation of the input
• Key question: is the representation interpretable?
• Not by default – but it may be possible to design neural net 

architectures such that it is!
• Detangled representations

(Siddharth et al. 2017)

Input Recon. Varying Identity

Input Recon. Varying Lighting

Identity Lighting

Ours
(Full Supervision)

1.9% (± 1.5) 3.1% (± 3.8)

Ours
(Semi-Supervised)

3.5% (± 3.4) 17.6% (± 1.8)

Jampani et al. [11]
(plot asymptotes)

⇡ 30 ⇡ 10

Figure 4: Left: Exploring the generative capacity of the supervised model by manipulating identity
and lighting given a fixed (inferred) value of the other latent variables. Right: Classification and
regression error rates for identity and lighting latent variables, fully-supervised, and semi-supervised
(with 6 labelled example images for each of the 38 individuals, a supervision rate of ⇢ = 0.5,
and ↵ = 10). Classification is a direct 1-out-of-38 choice, whereas for the comparison, error is a
nearest-neighbour loss based on the inferred reflectance. Regression loss is angular distance.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 5.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set
xk to the mean of the distribution. This can be seen akin to providing bounding-boxes around the
constituent digits as supervision for the labelled data, which must be taken into account when learning
the affine transformations that decompose a multi-MNIST image into its constituent MNIST-like
images. This model design is similar to the one used in DRAW [9], recurrent VAEs [3], and AIR [4].

In the absence of a canonical multi-MNIST dataset, we created our own from the MNIST dataset by
manipulating the scale and positioning of the standard digits into a combined canvas, evenly balanced
across the counts (1-3) and digits. We then conducted two experiments within this domain. In the
first experiment, we seek to measure how well the stochastic sequence generator learns to count
on its own, with no heed paid to disentangling the latent representations for the underlying digits.

Intrinsic Faces Multi-MNIST
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Figure 5: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.
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What this Means for NSF AI Strategy
•While industry is investing heavily in AI applications, federal 

support is still crucial for fundamental research
• Understanding how, why, and when deep learning works
• Hybrid reasoning
• General intelligence / commonsense
• AI applications for social good (i.e. non-commercial)

• Reducing deliberative tasks to reflexive ones can lead to 
ethical quandaries
• Credit risk scoring
• Prison sentencing 
• Use of lethal force in autonomous weapons



NSF CISE Dear Colleague Letter (Nov 2, 2018)
Fairness, Ethics, Accountability, and Transparency: Enabling 
Breakthrough Research to Expand Inclusivity in Computer and 
Information Science and Engineering Research
• Fairness: How do we prevent socially undesirable bias in AI 

algorithms?  
• Ethics: What are ethical concerns when creating AI systems?
• Accountability: How is responsibility for the outcomes of an AI 

system shared between inventors, implementors, and end users?
• Transparency: How can and when must the inner workings of an 

AI system be made understandable to users?



NSF AI Programs Featuring FEAT

• NSF/CISE has been supporting fundamental AI search for 50 years
• Now: numerous AI-focused interdisciplinary funding programs that 

emphasize the social impacts of AI

The Future of Work at 
the Human-Technology 

Frontier



The Future of Work at the Human-Technology 
Frontier

2018:
• Foundations for Augmenting 

Human Cognition 
• Embodied Intelligent Cognitive 

Assistants
• 2019:
• Expanded solicitation coming 

out in a few days!



Development of AI Roadmaps

• Artificial Intelligence Roadmap
• Bottom-up, driven by research community
• Computing Community Consortium with support from NSF
• Steering Committee from academia and industry
• Workshops
• November 2018 – Integrated Intelligence
• December 2018 – Interaction
• Winter 2019 – Learning & Robotics



Involving the Community

• W1: Integrated Intelligence 

• Chairs: Marie desJardins and Ken 

Forbus

• Understanding the mind

• Composing intelligent capabilities

• Open repositories of knowledge

• W2: Interaction 

• Chairs: Kathy McKeown and Dan 

Weld

• Interactions that matter

• Trust and responsibility

• People interacting online

• W3: Learning and Robotics 

• Chairs: Tom Dietterich and Fei-Fei 

Li

• Deeper learning

• Integrating statistical learning and 

symbolic representations

• Diversified learning modalities

• AAAI Town Hall

• Email your ideas to 

cccinfo@cra.org



National AI Research & 
Development Strategic Plan
• Plan for AI investment in R&D across all federal agencies
• Chaired by NSF and IARPA, 40 participating agencies
• Spring 1019: R&D Plan plus Implementation Report 
• Request for Information comments received Oct 26 from

individuals, universities, major high-tech companies
• Responses stress
• Importance of synergy between federal and industry investments
• Importance of supporting work in FEAT
• US at high risk of losing leadership in AI to China
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