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Trade-offs in Decision Making
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• Trade off between uncertainty and time scale of decision making
• Uncertainty play a critical role ⇒ its representation is essential 

• Unified approach/framework for decision making  

Model Predictive 
Control (MPC)

Deep Reinforcement 
Learning (DRL)

Im
itation Learning 
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Uncertainty Representation and Learning  

Finding the optimal policy 
(non-convex optimization)

Many Data

Non-Parametric 
Methods

Surrogate-based 
Methods 

(e.g., Gaussian Processes (GP), 
Delta-DOGS, Alpha-DOGS)

Semi-Parametric 
Methods 

Physics Driven  
Methods + Surrogate-

based Methods

Deep Neural 
Network 

Feedforward NN
Recurrent NN 

Few Data

Alimo, Beyhaghi, Bewley, 2017

Machine Learning Approaches
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Case Study: Formation Flying

Credit: JPL-CAST Swarm Autonomy 

Formation flying → flying individual satellites between fixed states 
in a local reference frame.

How do we: 
• Move satellites between fixed states?
• Minimize fuel?
• Estimate fuel cost in advance? 

Credit: JPL-CAST Swarm Autonomy 

Goal: 
• Generalize undesirable constraints 
• Specific formations 
• Dynamic models of fixed complexity 
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In orbit formation assignment

LVLH (Local Vertical Local Horizontal Reference) Frame
[Rahmani et al 2013, Morgan et al. 2016] 

Two-burn maneuver with Delaunay-
based optimization (deltaDOGS) in Hill’s 
Frame.
S. R. Alimo et al. “Delaunay-based Derivative-free Optimization via Global 
Surrogates”. JOGO 2018 

For a satellite in formation flying: 
• Relative Position

• Relative Velocity
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target

chaser

The relative motion between satellites in orbit (Clohessy-Wiltshire Hill’s Equations) [Ichikawa et al. 2008]:.  

Passive Relative Orbits 
(PRO) transfer.

In orbit formation assignment

Finding the optimal policy, !, for three burn maneuver problem:
• Let !(·, %) be a neural network parameterized by % ∈ ().
• +(,-) - expected reward starting from state ,-.
• Actor Critic method is used.  
• Fully connected neural network to model !.
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Main stream control approaches such as MPC, Sequential Convex Optimization 
fail in the situations:
1. Large number of spacecraft are presented 
2. Optimization involved with full nonlinear dynamics
3. Convergence is not guaranteed and is hard to find a bound for the objective 

function.
4. Collison constraints make these problems harder to address and increase 

uncertainty.  

Summary
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1. ML-based approaches showed promising results in dealing with high 
dimensional problems aka self-driving cars

2. Explore and exploit better in the parameter space
3. Simulations are highly accurate Reasonably clear choice of rewards 

• We need a generalizable satellite controller MPC + ML for satellite control 
• Imitation Learning can be used for online execution for the satellite control
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Uncertainty Representation and Learning  

In self-navigating spacecraft, due to safety 
criticality, backup systems are essential.

Sensors

End-to-End 
Control Policy 

Filtering Expert MPC 
Policy

Backup System

Satellite/World

ML-based Planner 
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Clohessy-Wiltshire Hill’s Equations 

i

jUsing Hill’s equation for relative S/C motion

Solution of which depends on eAt

Ref: Rahmani et al. “Fuel Optimal In Orbit Position Assignment of Formation Flying Spacecraft” 2015


