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Degraded States in Aviation



Finding Precursors to Degraded States

1. Detect degraded states in aviation data
– Such states may increase the likelihood of a safety incident
– We use statistical methods, potentially with a human in the loop

2. Predict that a degraded state may occur in the future
– If the prediction is made early, then corrections can be made
– We train a “black box” recurrent neural network to make the 

prediction

3. Explain why the prediction was made
– This helps to identify the precursors to the degraded state
– We extract an interpretable (“white box”) model from the neural 

network
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Data

Sequence ! = #$%, #$', … , #$) of aircraft state observations
over time
Each observation #$* contains the multiple feature values:
– Absolute distance to the airport
– Relative distance to the airport
– Altitude
– Ground speed
– Latitude
– Longitude
– Vertical speed
– Ground acceleration
– Heading
– Heading rate
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Detection via Statistical Techniques

For a given altitude, is the aircraft too far away from the 
airport?  I.e., is relative distance to the airport  

!"#$%"#
&"#$%"#

≥ 1?

– )*# is the absolute distance to the airport
– +*# is the distance upper bound
– ,*# is the distance lower bound
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Piecewise Linear Regression Smoothing via Multiquadric RBFs



Prediction via Long Short-Term Memory

Input: observation !"#
Output: degree of belief $"# ∈ 0, 1 that a degraded state will 
occur in the future

Memory cells store information for extended periods of time
Gates determine:
– How much is stored in memory
– How long memory persists
– How memory affects the output
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[Monner and Reggia 2010]



Explanation via White Box Model Extraction

Start with a degraded training 
sequence ! = #$%, #$', … , #$)
– The degraded state is predicted at time 
*+ ≤ *-

Perturb ! via gradient descent, until 
the network’s prediction changes
Let !. be the perturbed sequence
– Note that !. exists on (or near) the 

network’s decision boundary

Compute the gradient /0$1 !. with 
respect to !.
Define the hyperplane equation:
/0$1 !. 2 ! − /0$1 !. 2 !. = 0
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Approximation Accuracy
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Interpreting the Decision Criteria

Feature Average Coefficient Standard Deviation of 
Coefficients

Distance 5.66 2.49

Relative Distance 14.48 6.12

Altitude -1.06 0.66

Ground Speed -7.73 3.39

Latitude -0.96 0.83

Longitude 0.45 0.78

Vertical Speed -1.26 0.57

Acceleration -0.64 0.84

Heading -0.06 0.26

Heading Rate 0.32 0.33
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A distance upper bound violation is more likely to occur if the flight is already close 
to the upper bound; this may be associated with lower ground speeds



Conclusions and Future Work

We performed sensitivity analysis at the decision boundary, 
and approximated it via hyperplanes
– The approximation is accurate, for the given prediction problem
– The approximation yields insight into the network’s decision-making 

logic

We are applying the approach to find precursors for other 
types of degraded states
– E.g., unstable approaches

Can the approach work for other neural network 
architectures?
– E.g., deep neural networks
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Thank You!
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