

AGNs and their jets through a sensitive MeV eye

Presented by: Lea Marcotulli

On behalf of the AMEGO team

AGNs in the MeV

Hadronic vs. Leptonic emission

AGNs to be detected

Blazar population

- The more luminous blazars have a IC peak at <<100 MeV
- We refer to this class as MeV blazars

• They are among most powerful persistent objects in the Universe

- They are among most powerful persistent objects in the Universe
- With large jet power that easily exceeds the accretion disk luminosity——Black hole spin may be important

MeV BLAZARS

Detected up to very high redshifts (z>2, up to z~4,5, Ajello et al. 2009)

- They are among most powerful persistent objects in the Universe
- With large jet power that easily exceeds the accretion disk luminosity
 Black hole spin may be important
- Detected up to very high redshifts
 (z>2, up to z~4,5, Ajello et al. 2009)
- They host extremely massive black holes $(M_{BH} \ge 10^9 M_{\odot})$

Evolution of MeV Blazars

 Evolution of MeV blazars is stronger than any other source class: i.e. their maximum density may be very early on

Evolution of MeV Blazars

- Evolution of MeV blazars is stronger than any other source class: i.e. their maximum density may be very early on
- Clear that the radio-loud phase may play a very important role in the growing of massive black holes

Evolution of MeV Blazars

- Evolution of MeV blazars is stronger than any other source class: i.e. their maximum density may be very early on
- Clear that the radio-loud phase may play a very important role in the growing of massive black holes
- Constraining the number density of extremely massive black holes in radio-loud systems is the easiest with blazars (via $2\Gamma^2$ correction)

Where is the blazar zone?

Lack of strong absorption in the LAT energy range due to UV BLR photons places the emission region beyond the BLR (Costamante et al. 2018)

Peak location and variability timescale will pinpoint the location of the emission region (BLR vs Torus)

Where is the blazar zone?

The Cosmic MeV Background (CMeVB)

Ackermann et al. 2015

MeV blazars for the CMeVB

MeV blazars can contribute up to 100%!

MeV blazars are hard to detect despite being bright!

MeV blazars are hard to detect despite being bright!

Bright in X-rays ($L_x > 10^{46}$ er s⁻¹)

a. Tens detected by Swift/BAT (Ajello et al, 2009, Paliya et al. 2019)

MeV blazars are hard to detect despite being bright!

Bright in X-rays (L_x>10⁴⁶ er s⁻¹)

- a. Tens detected by Swift/BAT (Ajello et al, 2009, Paliya et al. 2019)
- b. Few discovered (via follow up) with NuSTAR (Ghisellini, Sbarrato etc)

MeV blazars are hard to detect despite being bright!

Bright in X-rays (L_x>10⁴⁶ er s⁻¹)

- a. Tens detected by Swift/BAT (Ajello et al, 2009, Paliya et al. 2019)
- o. Few discovered (via follow up) with NuSTAR (Ghisellini, Sbarrato etc) and Fermi-LAT (Ajello, Paliya, Marcotulli etc.)

MeV

t despite being bright!

)47 . .

 10^{26}

 $\nu(\mathrm{Hz})$

Bright in X-rays ($L_X > 10^{46}$ er s⁻¹)

- a. Tens detected by Swift/BAT (Ajello et al, 2009, Paliya et al. 2019)
- b. Few discovered (via follow up) with NuSTAR (Ghisellini, Sbarrato etc) and Fermi-LAT (Ajello, Paliya, Marcotulli etc.)

Need an all-sky MeV mission!!!

How many blazars can be detected?

More than 100 blazars at z>3!!!

two extrapolations of blazar LF from Swift/BAT (Ajello et al. 2009)

	Z	N(>z)	N(>z)
	3	199	102
	4	154	57
	5	76	5
	6	24	0
	7	9	0
	8	3	0

PLE Evolution (A09) up to high z.

PLE Evolution (A09) to z~4 + high z exponential cutoff at z>4.

HADRONIC vs. LEPTONIC MODELs

TXS 0506+056 (lepto-hadronic model)

Ojha et al. Astro 2020, adapted from Cerruti et al. 2018

HADRONIC vs. LEPTONIC MODELs

Leptonic \rightarrow pure IC

Hadronic → proton synchrotron + hadronic cascades

Rani B. et al. Astro 2020, adapted from Zhang et al. 2019

AGN CORONA

Possible peak in MeV band from IC of pairs with accretion disk photons

OTHER AGNs to be detected

- γ-NLSys

Paliya et al. 2020

OTHER AGNs to be detected

- γ-NLSys
- Radio Galaxies

OTHER AGNs to be detected

- γ-NLSys
- Radio Galaxies
- Compact Steep Spectrum Objects

Paliya et al. 2020

Summary

An MeV mission (like AMEGO) will:

- 1. Detect hundreds of MeV blazars up to z~5 and maybe beyond
- 2. Help us constrain supermassive black hole growth theories
- 3. Explore the disk-jet connection beyond z=3
- 4. Constrain the location of the blazar emission region (BLR vs. Torus)
- 5. Understand blazar contribution to the MeV background
- 6. Discern hadronic vs. leptonic emission processes in blazars
- 7. Untangle physics of corona emission
- 8. Detect 10ths to 100ths of gamma undetected AGN sources that peak in MeV

AND MORE!!!