

Looking Under a Better Lamppost:

MeV Scale Dark Matter

R. Caputo NASA/GSFC

AMEGO Splinter Session AAS 2020

Candidates

R. Caputo, NASA/GSFC | AMEGO Splinter AAS 2020

Planck Collaboration, 2013; SubbaRao et al. (2008); J. Primack et al., 2011; NASA, APOD, 2006 August 24, J.A. Tyson et al., Astrophys. J.498: L107, 1998

Modified Gravity?

Boran et al., PRD 97, 041501 (2018),

Gravitons and photons travel in space-time in the same way

*SN1987a found the same thing for neutrinos and photons

Dark Matter Candidates

Weakly Interacting Massive Particles (WIMPs)

Lower bounds:

~10 GeV if mediated by Weak force (Lee-Weinberg bound) ~few MeV limited # neutrinos - thermal relic (Ho & Scherrer)

Upper bounds:

~I20 TeV (Unitarity bound)

Weakly Interacting Sub-eV Particles (WISPs)

Axion-like particles (WISPs) - any U(1) symmetry breaking Bounds: 10⁻³ neV to 10⁻³ eV (Axions: 10⁻⁵ to 10⁻³ eV)

What do you get from MeV WIMP annihilation?

How do you observe WISPs in the MeV regime?

- Central radio galaxy of Perseus cluster
- Bright γ-ray emitter
- Central B field of cluster: 25 µG

Taylor et al. 2006

Observational Requirements

Weakly Interacting Massive Particles (WIMPs)

- Wide Field-of-View and Exposure time similar to LAT
- High angular resolution (<3°) at I GeV at Galactic Center

Axion-like and Weakly Interacting Sub-eV Particles (WISPs)

- Energy resolution of <5% from 1-100 MeV
- Wide Field-of-View for transient searches

AMEGO Performance

WIMP Annihilation Sensitivity

Axions Produced in Core-Collapse Supernovae

credit: iStock

Produced ~10s with neutrinos Peak ~60 MeV Flux ∝ g_{aγ}⁴

Playeer ettall, 200157

But wait, there's more...

R. Caputo, NASA/GSFC | AMEGO Splinter AAS 2020

Probing the Galactic Center

Probing the Galactic Center

[Lee et al. 2016]

[Fermi-LAT Collaboration 2017]

Excess

Population of point sources: Millisecond pulsars

Complementarity in the γ -ray Sky

R. Caputo, NASA/GSFC | AMEGO Splinter AAS 2020

Chou et al. arXiv: 1709.08562

The Future is bright in the MeV band...

Complementarity: Direct Detection

16

Complementarity: Fixed-Target

Izaguirre et al. 2015

The Future is bright in the MeV band...

Well motivated discovery space in direct, collider and indirect dark matter searches for broad range of different dark matter candidates

Backups

R. Caputo, NASA/GSFC I AMEGO Splinter AAS 2020

Dark Matter Annihilation

How low (in mass) can you go?

 $\chi \chi \to \gamma \gamma$: Accessible at all energies $\chi \chi \to \gamma \pi^0$: Accessible if $\sqrt{\text{COM}}$ interaction > m_{π^0} $\chi \chi \to \pi^0 \pi^0$: Accessible if $\sqrt{\text{COM}}$ interaction > $2m_{\pi^0}$ $\chi \chi \to \bar{\ell}\ell$: Accessible if $\sqrt{\text{COM}}$ interaction > m_ℓ $\chi \chi \to \phi \phi$ and $\phi \to e^+e^-$: Additional mediators, cascade annihilation

Axions and Axion-like Particles

Convert in Galactic magnetic field (Primakoff effect) Or decay

[Peccei & Quinn 77; Wilczek 78; Weinberg 78; Preskill et al. 83; Abbott & Sikivie 83; Witten 84; e.g. Arvanitaki et al. 09; Cicoli et al. 12; Arias et al. 2012; Raffelt & Stodolsky 1988]

B

credit: iStock

Dark Matter Annihilation Limits from CMB

R. Caputo, NASA/GSFC I AMEGO Splinter AAS 2020

Axion/ALP Dark Matter Sensitivities

R. Caputo, NASA/GSFC | AMEGO Splinter AAS 2020

23

Indirect Searches: γ-rays

Observed = Particle Properties x Astrophysics Properties

R. Caputo, NASA/GSFC I AMEGO Splinter AAS 2020

Dark Matter Annihilation Sensitivity

R. Caputo, NASA/GSFC I AMEGO Splinter AAS 2020

P8R2_SOURCE_V6 acc. weighted PSF 68% containment

RC, et al., PoS (ICRC2017) 783